BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Eickhoff CS, Terry FE, Peng L, Meza KA, Sakala IG, Van Aartsen D, Moise L, Martin WD, Schriewer J, Buller RM, De Groot AS, Hoft DF. Highly conserved influenza T cell epitopes induce broadly protective immunity. Vaccine 2019;37:5371-81. [PMID: 31331771 DOI: 10.1016/j.vaccine.2019.07.033] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 Ward BJ, Makarkov A, Séguin A, Pillet S, Trépanier S, Dhaliwall J, Libman MD, Vesikari T, Landry N. Efficacy, immunogenicity, and safety of a plant-derived, quadrivalent, virus-like particle influenza vaccine in adults (18–64 years) and older adults (≥65 years): two multicentre, randomised phase 3 trials. The Lancet 2020;396:1491-503. [DOI: 10.1016/s0140-6736(20)32014-6] [Cited by in Crossref: 34] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
2 Rothlauf PW, Li Z, Pishesha N, Xie YJ, Woodham AW, Bousbaine D, Kolifrath SC, Verschoor VL, Ploegh HL. Noninvasive Immuno-PET Imaging of CD8+ T Cell Behavior in Influenza A Virus-Infected Mice. Front Immunol 2021;12:777739. [PMID: 34804069 DOI: 10.3389/fimmu.2021.777739] [Reference Citation Analysis]
3 Nguyen AT, Szeto C, Gras S. The pockets guide to HLA class I molecules. Biochem Soc Trans 2021;49:2319-31. [PMID: 34581761 DOI: 10.1042/BST20210410] [Reference Citation Analysis]
4 Deviatkin AA, Simonov RA, Trutneva KA, Maznina AA, Khavina EM, Volchkov PY. Universal Flu mRNA Vaccine: Promises, Prospects, and Problems. Vaccines 2022;10:709. [DOI: 10.3390/vaccines10050709] [Reference Citation Analysis]
5 Bibi S, Ullah I, Zhu B, Adnan M, Liaqat R, Kong WB, Niu S. In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology. Sci Rep 2021;11:1249. [PMID: 33441913 DOI: 10.1038/s41598-020-80899-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
6 De Groot AS, Moise L, Terry F, Gutierrez AH, Hindocha P, Richard G, Hoft DF, Ross TM, Noe AR, Takahashi Y, Kotraiah V, Silk SE, Nielsen CM, Minassian AM, Ashfield R, Ardito M, Draper SJ, Martin WD. Better Epitope Discovery, Precision Immune Engineering, and Accelerated Vaccine Design Using Immunoinformatics Tools. Front Immunol 2020;11:442. [PMID: 32318055 DOI: 10.3389/fimmu.2020.00442] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 12.0] [Reference Citation Analysis]
7 Šantak M, Matić Z. The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses 2022;14:521. [DOI: 10.3390/v14030521] [Reference Citation Analysis]
8 Bull MB, Cohen CA, Leung NHL, Valkenburg SA. Universally Immune: How Infection Permissive Next Generation Influenza Vaccines May Affect Population Immunity and Viral Spread. Viruses 2021;13:1779. [PMID: 34578360 DOI: 10.3390/v13091779] [Reference Citation Analysis]
9 Xia J, Kuang Y, Liang J, Jones M, Swain SL. Influenza Vaccine-Induced CD4 Effectors Require Antigen Recognition at an Effector Checkpoint to Generate CD4 Lung Memory and Antibody Production. J Immunol 2020;205:2077-90. [PMID: 32929040 DOI: 10.4049/jimmunol.2000597] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Lin PH, Liang CY, Yao BY, Chen HW, Pan CF, Wu LL, Lin YH, Hsu YS, Liu YH, Chen PJ, Hu CJ, Yang HC. Robust induction of TRMs by combinatorial nanoshells confers cross-strain sterilizing immunity against lethal influenza viruses. Mol Ther Methods Clin Dev 2021;21:299-314. [PMID: 33898629 DOI: 10.1016/j.omtm.2021.03.010] [Reference Citation Analysis]
11 van de Ven K, de Heij F, van Dijken H, Ferreira JA, de Jonge J. Systemic and respiratory T-cells induced by seasonal H1N1 influenza protect against pandemic H2N2 in ferrets. Commun Biol 2020;3:564. [PMID: 33037319 DOI: 10.1038/s42003-020-01278-5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
12 D'haeseleer P, Collette NM, Lao V, Segelke BW, Branda SS, Franco M. Shotgun Immunoproteomic Approach for the Discovery of Linear B-Cell Epitopes in Biothreat Agents Francisella tularensis and Burkholderia pseudomallei. Front Immunol 2021;12:716676. [PMID: 34659206 DOI: 10.3389/fimmu.2021.716676] [Reference Citation Analysis]
13 Ullah N, Anwer F, Ishaq Z, Siddique A, Shah MA, Rahman M, Rahman A, Mao X, Jiang T, Lee BL, Bae T, Ali A. In silico designed Staphylococcus aureus B-cell multi-epitope vaccine did not elicit antibodies against target antigens suggesting multi-domain approach. J Immunol Methods 2022;:113264. [PMID: 35341759 DOI: 10.1016/j.jim.2022.113264] [Reference Citation Analysis]
14 Sunita, Singhvi N, Singh Y, Shukla P. Computational approaches in epitope design using DNA binding proteins as vaccine candidate in Mycobacterium tuberculosis. Infect Genet Evol 2020;83:104357. [PMID: 32438080 DOI: 10.1016/j.meegid.2020.104357] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Sun W, Luo T, Liu W, Li J. Progress in the Development of Universal Influenza Vaccines. Viruses 2020;12:E1033. [PMID: 32957468 DOI: 10.3390/v12091033] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
16 Subrahmanyam PB, Holmes TH, Lin D, Su LF, Obermoser G, Banchereau J, Pascual V, García-Sastre A, Albrecht RA, Palucka K, Davis MM, Maecker HT. Mass Cytometry Defines Virus-Specific CD4+ T Cells in Influenza Vaccination. Immunohorizons 2020;4:774-88. [PMID: 33310880 DOI: 10.4049/immunohorizons.1900097] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 De Groot AS, Rosenberg AS, Miah SMS, Skowron G, Roberts BJ, Lélias S, Terry FE, Martin WD. Identification of a potent regulatory T cell epitope in factor V that modulates CD4+ and CD8+ memory T cell responses. Clin Immunol 2021;224:108661. [PMID: 33412295 DOI: 10.1016/j.clim.2020.108661] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Rattan A, White CL, Nelson S, Eismann M, Padilla-quirarte H, Glover MA, Dileepan T, Marathe BM, Govorkova EA, Webby RJ, Richards KA, Sant AJ. Development of a Mouse Model to Explore CD4 T Cell Specificity, Phenotype, and Recruitment to the Lung after Influenza B Infection. Pathogens 2022;11:251. [DOI: 10.3390/pathogens11020251] [Reference Citation Analysis]
19 Kardani K, Bolhassani A, Namvar A. An overview of in silico vaccine design against different pathogens and cancer. Expert Rev Vaccines 2020;19:699-726. [PMID: 32648830 DOI: 10.1080/14760584.2020.1794832] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
20 Singh J, Malik D, Raina A. Immuno-informatics approach for B-cell and T-cell epitope based peptide vaccine design against novel COVID-19 virus. Vaccine 2021;39:1087-95. [PMID: 33478787 DOI: 10.1016/j.vaccine.2021.01.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
21 Özer O, Lenz TL. Unique pathogen peptidomes facilitate pathogen-specific selection and specialization of MHC alleles. Mol Biol Evol 2021:msab176. [PMID: 34110412 DOI: 10.1093/molbev/msab176] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Mintaev RR, Glazkova DV, Orlova OV, Bogoslovskaya EV, Shipulin GA. Development of a Universal Epitope-Based Influenza Vaccine and Evaluation of Its Effectiveness in Mice. Vaccines 2022;10:534. [DOI: 10.3390/vaccines10040534] [Reference Citation Analysis]