BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nait Mohamed FA, Laraba-djebari F. Development and characterization of a new carrier for vaccine delivery based on calcium-alginate nanoparticles: Safe immunoprotective approach against scorpion envenoming. Vaccine 2016;34:2692-9. [DOI: 10.1016/j.vaccine.2016.04.035] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Liu Q, Li M, Xiong L, Qiu L, Bian X, Sun C, Sun Q. Oxidation modification of debranched starch for the preparation of starch nanoparticles with calcium ions. Food Hydrocolloids 2018;85:86-92. [DOI: 10.1016/j.foodhyd.2018.07.004] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
2 Hasnain MS, Nayak AK, Kurakula M, Hoda MN. Alginate nanoparticles in drug delivery. Alginates in Drug Delivery. Elsevier; 2020. pp. 129-52. [DOI: 10.1016/b978-0-12-817640-5.00006-6] [Cited by in Crossref: 8] [Article Influence: 4.0] [Reference Citation Analysis]
3 Martin-Eauclaire MF, Adi-Bessalem S, Hammoudi-Triki D, Laraba-Djebari F, Bougis PE. Serotherapy against Voltage-Gated Sodium Channel-Targeting αToxins from Androctonus Scorpion Venom. Toxins (Basel) 2019;11:E63. [PMID: 30678116 DOI: 10.3390/toxins11020063] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
4 Nouri A, Nait Mohamed FA, Laraba-djebari F. New and safe formulation for scorpion immunotherapy: Comparative study between saponin and FCA adjuvants associated to attenuated venom. Vaccine 2018;36:1720-7. [DOI: 10.1016/j.vaccine.2018.02.071] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
5 Bachsais N, Boussag-abib L, Laraba-djebari F. Safety and efficiency of active immunization with detoxified antigen against scorpion venom: side effect evaluation. Inflamm Res 2017;66:765-74. [DOI: 10.1007/s00011-017-1055-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
6 Bermúdez-Méndez E, Fuglsang-Madsen A, Føns S, Lomonte B, Gutiérrez JM, Laustsen AH. Innovative Immunization Strategies for Antivenom Development. Toxins (Basel) 2018;10:E452. [PMID: 30400220 DOI: 10.3390/toxins10110452] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
7 Lone NA, Spackman E, Kapczynski D. Immunologic evaluation of 10 different adjuvants for use in vaccines for chickens against highly pathogenic avian influenza virus. Vaccine 2017;35:3401-8. [DOI: 10.1016/j.vaccine.2017.05.010] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 3.8] [Reference Citation Analysis]
8 Medeiros ASA, Torres-Rêgo M, Lacerda AF, Rocha HAO, Egito ESTD, Cornélio AM, Tambourgi DV, Fernandes-Pedrosa MF, da Silva-Júnior AA. Self-Assembled Cationic-Covered Nanoemulsion as A Novel Biocompatible Immunoadjuvant for Antiserum Production Against Tityus serrulatus Scorpion Venom. Pharmaceutics 2020;12:E927. [PMID: 33003322 DOI: 10.3390/pharmaceutics12100927] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Shen YF, Huang JH, Wang KY, Zheng J, Cai L, Gao H, Li XL, Li JF. PTH Derivative promotes wound healing via synergistic multicellular stimulating and exosomal activities. Cell Commun Signal 2020;18:40. [PMID: 32151266 DOI: 10.1186/s12964-020-00541-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Soares KSR, Gláucia-Silva F, Daniele-Silva A, Torres-Rêgo M, Araújo NK, Menezes YAS, Damasceno IZ, Tambourgi DV, da Silva-Júnior AA, Fernandes-Pedrosa MF. Antivenom Production against Bothrops jararaca and Bothrops erythromelas Snake Venoms Using Cross-Linked Chitosan Nanoparticles as an Immunoadjuvant. Toxins (Basel) 2018;10:E158. [PMID: 29659491 DOI: 10.3390/toxins10040158] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
11 Choukaife H, Doolaanea AA, Alfatama M. Alginate Nanoformulation: Influence of Process and Selected Variables. Pharmaceuticals (Basel) 2020;13:E335. [PMID: 33114120 DOI: 10.3390/ph13110335] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
12 Rosch JG, Brown AL, DuRoss AN, DuRoss EL, Sahay G, Sun C. Nanoalginates via Inverse-Micelle Synthesis: Doxorubicin-Encapsulation and Breast Cancer Cytotoxicity. Nanoscale Res Lett 2018;13:350. [PMID: 30392055 DOI: 10.1186/s11671-018-2748-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
13 Rocha Soares KS, Oliveira AR, Daniele-silva A, Glaucia-silva F, Caroni ALP, Fernandes-pedrosa MF, da Silva-júnior AA. Self-assembled scorpion venom proteins cross-linked chitosan nanoparticles for use in the immunotherapy. Journal of Molecular Liquids 2017;241:540-8. [DOI: 10.1016/j.molliq.2017.06.071] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 1.6] [Reference Citation Analysis]
14 Wibowo D, Jorritsma SHT, Gonzaga ZJ, Evert B, Chen S, Rehm BHA. Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials 2021;268:120597. [PMID: 33360074 DOI: 10.1016/j.biomaterials.2020.120597] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
15 Taghipour-sabzevar V, Sharifi T, Moghaddam MM. Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Therapeutic Delivery 2019;10:527-50. [DOI: 10.4155/tde-2019-0044] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 4.7] [Reference Citation Analysis]
16 Hamzaoui A, Laraba-Djebari F. Development and evaluation of polymeric nanoparticles as a delivery system for snake envenoming prevention. Biologicals 2021;70:44-52. [PMID: 33563514 DOI: 10.1016/j.biologicals.2021.01.003] [Reference Citation Analysis]
17 Nait Mohamed FA, Nouri A, Laraba-djebari F. Reactogenicity and safety assessment of an attenuated nanovaccine against scorpion envenomation: Preclinical study. Vaccine 2017;35:6657-63. [DOI: 10.1016/j.vaccine.2017.10.028] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
18 Dmour I, Taha MO. Natural and semisynthetic polymers in pharmaceutical nanotechnology. Organic Materials as Smart Nanocarriers for Drug Delivery. Elsevier; 2018. pp. 35-100. [DOI: 10.1016/b978-0-12-813663-8.00002-6] [Cited by in Crossref: 3] [Article Influence: 0.8] [Reference Citation Analysis]
19 Zhao L, Jin W, Cruz JG, Marasini N, Khalil ZG, Capon RJ, Hussein WM, Skwarczynski M, Toth I. Development of Polyelectrolyte Complexes for the Delivery of Peptide-Based Subunit Vaccines against Group A Streptococcus. Nanomaterials (Basel) 2020;10:E823. [PMID: 32357402 DOI: 10.3390/nano10050823] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
20 Khan W, Abtew E, Modani S, Domb AJ. Polysaccharide Based Nanoparticles. Isr J Chem 2019;58:1315-29. [DOI: 10.1002/ijch.201800051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 He L, Shang Z, Liu H, Yuan ZX. Alginate-Based Platforms for Cancer-Targeted Drug Delivery. Biomed Res Int 2020;2020:1487259. [PMID: 33083451 DOI: 10.1155/2020/1487259] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
22 Boussag-Abib L, Laraba-Djebari F. Long-term antibody response and protective effect induced by attenuated scorpion toxins: Involvement of memory plasma cells. Immunobiology 2021;226:152108. [PMID: 34247017 DOI: 10.1016/j.imbio.2021.152108] [Reference Citation Analysis]
23 Rebbouh F, Martin-eauclaire M, Laraba-djebari F. Chitosan nanoparticles as a delivery platform for neurotoxin II from Androctonus australis hector scorpion venom: Assessment of toxicity and immunogenicity. Acta Tropica 2020;205:105353. [DOI: 10.1016/j.actatropica.2020.105353] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
24 Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB. Alginate Nanoparticles for Drug Delivery and Targeting. Curr Pharm Des 2019;25:1312-34. [PMID: 31465282 DOI: 10.2174/1381612825666190425163424] [Cited by in Crossref: 50] [Cited by in F6Publishing: 35] [Article Influence: 25.0] [Reference Citation Analysis]
25 Angsantikul P, Fang RH, Zhang L. Toxoid Vaccination against Bacterial Infection Using Cell Membrane-Coated Nanoparticles. Bioconjug Chem 2018;29:604-12. [PMID: 29241006 DOI: 10.1021/acs.bioconjchem.7b00692] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 4.6] [Reference Citation Analysis]