BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vivekanandan AK, Subash V, Chen S, Chen S. Sonochemical synthesis of nickel-manganous oxide nanocrumbs decorated partially reduced graphene oxide for efficient electrochemical reduction of metronidazole. Ultrasonics Sonochemistry 2020;68:105176. [DOI: 10.1016/j.ultsonch.2020.105176] [Cited by in Crossref: 7] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
Number Citing Articles
1 Du M, Chen Q, Xu X. A novel and label-free electrochemical aptasensor based on exonuclease III and G-quadruplex DNAzyme for sensitive and selective detection of metronidazole. Microchemical Journal 2022;179:107577. [DOI: 10.1016/j.microc.2022.107577] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Hu X, Zhang Y, Zeng T, Wan Q, Wu K, Yang N. A novel electrochemical sensor based on MnOOH nanorod/expanded graphite for sensitive monitoring of metronidazole. Diamond and Related Materials 2022. [DOI: 10.1016/j.diamond.2022.109303] [Reference Citation Analysis]
3 Sherlin V A, Baby JN, Sriram B, Hsu Y, Wang S, George M. Construction of ANbO3 (A= na, K)/f-carbon nanofiber: Rapid and real-time electrochemical detection of hydroxychloroquine in environmental samples. Environmental Research 2022. [DOI: 10.1016/j.envres.2022.114232] [Reference Citation Analysis]
4 Yu T, Glennon L, Fenelon O, Breslin CB. Electrodeposition of bismuth at a graphene modified carbon electrode and its application as an easily regenerated sensor for the electrochemical determination of the antimicrobial drug metronidazole. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123758] [Reference Citation Analysis]
5 Reddy YVM, Shin JH, Palakollu VN, Sravani B, Choi CH, Park K, Kim SK, Madhavi G, Park JP, Shetti NP. Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Adv Colloid Interface Sci 2022;304:102664. [PMID: 35413509 DOI: 10.1016/j.cis.2022.102664] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 10.0] [Reference Citation Analysis]
6 Li Z, Shen F, Mishra RK, Wang Z, Zhao X, Zhu Z. Advances of Drugs Electroanalysis Based on Direct Electrochemical Redox on Electrodes: A Review. Crit Rev Anal Chem 2022;:1-46. [PMID: 35575782 DOI: 10.1080/10408347.2022.2072679] [Reference Citation Analysis]
7 Zhang L, Yin M, Qiu J, Qiu T, Chen Y, Qi S, Wei X, Tian X, Xu D. An electrochemical sensor based on CNF@AuNPs for metronidazole hypersensitivity detection. Biosensors and Bioelectronics: X 2022;10:100102. [DOI: 10.1016/j.biosx.2021.100102] [Reference Citation Analysis]
8 Al-zaqri N, Umamakeshvari K, Mohana V, Muthuvel A, Boshaala A. Green synthesis of nickel oxide nanoparticles and its photocatalytic degradation and antibacterial activity. J Mater Sci: Mater Electron. [DOI: 10.1007/s10854-022-08149-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Yüksel Price B, Kennedy SR. Resonant acoustic-mixing technology as a novel method for production of negative-temperature coefficient thermistors. J Mater Sci: Mater Electron. [DOI: 10.1007/s10854-022-08110-2] [Reference Citation Analysis]
10 Tong L, Cai B, Zhang R, Feng J, Pan H. In Situ Hydrodeoxygenation of Lignin-Derived Phenols With Synergistic Effect Between the Bimetal and Nb2O5 Support. Front Energy Res 2021;9:746109. [DOI: 10.3389/fenrg.2021.746109] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Vasseghian Y, Dragoi EN, Almomani F, Le VT. Graphene-based materials for metronidazole degradation: A comprehensive review. Chemosphere 2021;286:131727. [PMID: 34352554 DOI: 10.1016/j.chemosphere.2021.131727] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 18.0] [Reference Citation Analysis]
12 Maphiri VM, Rutavi G, Sylla NF, Adewinbi SA, Fasakin O, Manyala N. Novel Thermally Reduced Graphene Oxide Microsupercapacitor Fabricated via Mask-Free AxiDraw Direct Writing. Nanomaterials (Basel) 2021;11:1909. [PMID: 34443740 DOI: 10.3390/nano11081909] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
13 Chinnaraj S, Palani V, Yadav S, Arumugam M, Sivakumar M, Maluventhen V, Singh M. Green synthesis of silver nanoparticle using goniothalamus wightii on graphene oxide nanocomposite for effective voltammetric determination of metronidazole. Sensing and Bio-Sensing Research 2021;32:100425. [DOI: 10.1016/j.sbsr.2021.100425] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Muthukutty B, Vivekanandan AK, Chen S, Sivakumar M, Chen S. Designing hybrid barium tungstate on functionalized carbon black as electrode modifier for low potential detection of antihistamine drug promethazine hydrochloride. Composites Part B: Engineering 2021;215:108789. [DOI: 10.1016/j.compositesb.2021.108789] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
15 Kesavan G, Chen S. Sonochemical-assisted synthesis of zinc vanadate microstructure for electrochemical determination of metronidazole. J Mater Sci: Mater Electron 2021;32:9377-91. [DOI: 10.1007/s10854-021-05601-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
16 Gopi PK, Kesavan G, Chen S, Ravikumar CH. Cadmium sulfide quantum dots anchored on reduced graphene oxide for the electrochemical detection of metronidazole. New J Chem 2021;45:3022-33. [DOI: 10.1039/d0nj05501h] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]