BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhu L, Altman MB, Laszlo A, Straube W, Zoberi I, Hallahan DE, Chen H. Ultrasound Hyperthermia Technology for Radiosensitization. Ultrasound Med Biol 2019;45:1025-43. [PMID: 30773377 DOI: 10.1016/j.ultrasmedbio.2018.12.007] [Cited by in Crossref: 49] [Cited by in F6Publishing: 53] [Article Influence: 12.3] [Reference Citation Analysis]
Number Citing Articles
1 Aram E, Moeni M, Abedizadeh R, Sabour D, Sadeghi-abandansari H, Gardy J, Hassanpour A. Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects. Nanomaterials 2022;12:3567. [DOI: 10.3390/nano12203567] [Reference Citation Analysis]
2 Chaudhry M, Lyon P, Coussios C, Carlisle R. Thermosensitive liposomes: A promising step towards locsalised chemotherapy. Expert Opin Drug Deliv 2022. [PMID: 35830722 DOI: 10.1080/17425247.2022.2099834] [Reference Citation Analysis]
3 Braunstein L, Brüningk SC, Rivens I, Civale J, Haar GT. Characterization of Acoustic, Cavitation, and Thermal Properties of Poly(vinyl alcohol) Hydrogels for Use as Therapeutic Ultrasound Tissue Mimics. Ultrasound Med Biol 2022;48:1095-109. [PMID: 35337687 DOI: 10.1016/j.ultrasmedbio.2022.02.007] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
4 Said Camilleri J, Farrugia L, Curto S, Rodrigues DB, Farina L, Caruana Dingli G, Bonello J, Farhat I, Sammut CV. Review of Thermal and Physiological Properties of Human Breast Tissue. Sensors (Basel) 2022;22:3894. [PMID: 35632302 DOI: 10.3390/s22103894] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Roberts JW, Powlovich L, Sheybani N, LeBlang S. Focused ultrasound for the treatment of glioblastoma. J Neurooncol 2022. [PMID: 35267132 DOI: 10.1007/s11060-022-03974-0] [Reference Citation Analysis]
6 Bucharskaya AB, Khlebtsov NG, Khlebtsov BN, Maslyakova GN, Navolokin NA, Genin VD, Genina EA, Tuchin VV. Photothermal and Photodynamic Therapy of Tumors with Plasmonic Nanoparticles: Challenges and Prospects. Materials (Basel) 2022;15:1606. [PMID: 35208145 DOI: 10.3390/ma15041606] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
7 Li Y, Zhang R, Xu Z, Wang Z. Advances in Nanoliposomes for the Diagnosis and Treatment of Liver Cancer. IJN 2022;Volume 17:909-25. [DOI: 10.2147/ijn.s349426] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Yang Y, Luo H, Zhao Y, Li L, He Y, Xi F, Jin H, Gao R, Luo Q, Liu J. Promoting the effect of microbubble-enhanced ultrasound on hyperthermia in rabbit liver. J Med Ultrasonics. [DOI: 10.1007/s10396-021-01187-y] [Reference Citation Analysis]
9 Amigh S, Mohajeri A. Coronene-based quantum dots for the delivery of the doxorubicin anticancer drug: a computational study. New J Chem 2022;46:18518-34. [DOI: 10.1039/d2nj00636g] [Reference Citation Analysis]
10 Rahimi R, Solimannejad M, Soleimannejad M. Two-dimensionalcovalent triazine frameworks as superior nanocarriers for the delivery of thioguanine anti-cancer drugs: a periodic DFT study. New J Chem . [DOI: 10.1039/d2nj02050e] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Kim K, Zubair M, Adams M, Diederich CJ, Ozhinsky E. Sonication strategies toward volumetric ultrasound hyperthermia treatment using the ExAblate body MRgFUS system. Int J Hyperthermia 2021;38:1590-600. [PMID: 34749579 DOI: 10.1080/02656736.2021.1998658] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Meng Y, Pople CB, Budiansky D, Li D, Suppiah S, Lim-Fat MJ, Perry J, Sahgal A, Lipsman N. Current state of therapeutic focused ultrasound applications in neuro-oncology. J Neurooncol 2021. [PMID: 34661791 DOI: 10.1007/s11060-021-03861-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
13 Osintsev AM, Vasilchenko IL, Rodrigues DB, Stauffer PR, Braginsky VI, Rynk VV, Gromov ES, Prosekov AY, Kaprin AD, Kostin AA. Characterization of Ferromagnetic Composite Implants for Tumor Bed Hyperthermia. IEEE Trans Magn 2021;57. [PMID: 34538882 DOI: 10.1109/tmag.2021.3097915] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Zhang M, Rodrigues A, Zhou Q, Li G. Focused ultrasound: growth potential and future directions in neurosurgery. J Neurooncol 2021. [PMID: 34410576 DOI: 10.1007/s11060-021-03820-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Cao TL, Le TA, Hadadian Y, Yoon J. Theoretical Analysis for Using Pulsed Heating Power in Magnetic Hyperthermia Therapy of Breast Cancer. Int J Mol Sci 2021;22:8895. [PMID: 34445603 DOI: 10.3390/ijms22168895] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Karmacharya MB, Sultan LR, Hunt SJ, Sehgal CM. Hydralazine augmented ultrasound hyperthermia for the treatment of hepatocellular carcinoma. Sci Rep 2021;11:15553. [PMID: 34330960 DOI: 10.1038/s41598-021-94323-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
17 Lopes-Nunes J, Oliveira PA, Cruz C. G-Quadruplex-Based Drug Delivery Systems for Cancer Therapy. Pharmaceuticals (Basel) 2021;14:671. [PMID: 34358097 DOI: 10.3390/ph14070671] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
18 Zhu L, Huang Y, Lam D, Gach HM, Zoberi I, Hallahan DE, Grigsby PW, Chen H, Altman MB. Targetability of cervical cancer by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated hyperthermia (HT) for patients receiving radiation therapy. Int J Hyperthermia 2021;38:498-510. [PMID: 33757406 DOI: 10.1080/02656736.2021.1895330] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
19 Hannon G, Tansi FL, Hilger I, Prina‐mello A. The Effects of Localized Heat on the Hallmarks of Cancer. Adv Therap 2021;4:2000267. [DOI: 10.1002/adtp.202000267] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Bloemberg J, Van Riel L, Dodou D, Breedveld P. Focal therapy for localized cancer: a patent review. Expert Rev Med Devices 2021;18:751-69. [PMID: 34139941 DOI: 10.1080/17434440.2021.1943360] [Reference Citation Analysis]
21 Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, Ter Haar G, Wust P, Crezee J. Heating technology for malignant tumors: a review. Int J Hyperthermia 2020;37:711-41. [PMID: 32579419 DOI: 10.1080/02656736.2020.1779357] [Cited by in Crossref: 98] [Cited by in F6Publishing: 73] [Article Influence: 49.0] [Reference Citation Analysis]
22 Nickoloff JA, Taylor L, Sharma N, Kato TA. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. Cancer Drug Resist 2021;4:244-63. [PMID: 34337349 DOI: 10.20517/cdr.2020.89] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
23 Zhang X, Landgraf L, Bailis N, Unger M, Jochimsen TH, Melzer A. Image-Guided High-Intensity Focused Ultrasound, A Novel Application for Interventional Nuclear Medicine? J Nucl Med 2021;62:1181-8. [PMID: 34088775 DOI: 10.2967/jnumed.120.256230] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Yang Y, Pacia CP, Ye D, Zhu L, Baek H, Yue Y, Yuan J, Miller MJ, Cui J, Culver JP, Bruchas MR, Chen H. Sonothermogenetics for noninvasive and cell-type specific deep brain neuromodulation. Brain Stimul 2021;14:790-800. [PMID: 33989819 DOI: 10.1016/j.brs.2021.04.021] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 6.5] [Reference Citation Analysis]
25 Wang T, Rong F, Tang Y, Li M, Feng T, Zhou Q, Li P, Huang W. Targeted polymer-based antibiotic delivery system: A promising option for treating bacterial infections via macromolecular approaches. Progress in Polymer Science 2021;116:101389. [DOI: 10.1016/j.progpolymsci.2021.101389] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 11.5] [Reference Citation Analysis]
26 Zhang X, Bobeica M, Unger M, Bednarz A, Gerold B, Patties I, Melzer A, Landgraf L. Focused ultrasound radiosensitizes human cancer cells by enhancement of DNA damage. Strahlenther Onkol 2021;197:730-43. [PMID: 33885910 DOI: 10.1007/s00066-021-01774-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
27 Joiner JB, Pylayeva-Gupta Y, Dayton PA. Focused Ultrasound for Immunomodulation of the Tumor Microenvironment. J Immunol 2020;205:2327-41. [PMID: 33077668 DOI: 10.4049/jimmunol.1901430] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
28 Yuan J, Ye D, Chen S, Chen H. Therapeutic Ultrasound-Enhanced Immune Checkpoint Inhibitor Therapy. Front Phys 2021;9:636985. [DOI: 10.3389/fphy.2021.636985] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
29 Karmacharya MB, Sultan LR, Sehgal CM. Photoacoustic monitoring of oxygenation changes induced by therapeutic ultrasound in murine hepatocellular carcinoma. Sci Rep 2021;11:4100. [PMID: 33603035 DOI: 10.1038/s41598-021-83439-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
30 Singh G, Paul A, Shekhar H, Paul A. Pulsed Ultrasound Assisted Thermo-Therapy for Subsurface Tumor Ablation: A Numerical Investigation. Journal of Thermal Science and Engineering Applications 2021;13:041007. [DOI: 10.1115/1.4048674] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Stephen ZR, Zhang M. Recent Progress in the Synergistic Combination of Nanoparticle-Mediated Hyperthermia and Immunotherapy for Treatment of Cancer. Adv Healthc Mater 2021;10:e2001415. [PMID: 33236511 DOI: 10.1002/adhm.202001415] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
32 Alle M, Bandi R, Sharma G, Dadigala R, Husen A, Kim J. Current Trends in Engineered Gold Nanoparticles for Cancer Therapy. Smart Nanomaterials in Biomedical Applications 2021. [DOI: 10.1007/978-3-030-84262-8_1] [Reference Citation Analysis]
33 Amrahli M, Centelles M, Cressey P, Prusevicius M, Gedroyc W, Xu XY, So PW, Wright M, Thanou M. MR-labelled liposomes and focused ultrasound for spatiotemporally controlled drug release in triple negative breast cancers in mice. Nanotheranostics 2021;5:125-42. [PMID: 33457192 DOI: 10.7150/ntno.52168] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
34 Shalaby T, Gawish A, Hamad H. A Promising Platform of Magnetic Nanofluid and Ultrasonic Treatment for Cancer Hyperthermia Therapy: In Vitro and in Vivo Study. Ultrasound Med Biol 2021;47:651-65. [PMID: 33353784 DOI: 10.1016/j.ultrasmedbio.2020.11.023] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
35 Reich CM, Sattler B, Jochimsen TH, Unger M, Melzer L, Landgraf L, Barthel H, Sabri O, Melzer A. Practical setting and potential applications of interventions guided by PET/MRI. Q J Nucl Med Mol Imaging 2021;65:43-50. [PMID: 33300750 DOI: 10.23736/S1824-4785.20.03293-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
36 Hu S, Zhang X, Unger M, Patties I, Melzer A, Landgraf L. Focused Ultrasound-Induced Cavitation Sensitizes Cancer Cells to Radiation Therapy and Hyperthermia. Cells 2020;9:E2595. [PMID: 33287379 DOI: 10.3390/cells9122595] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
37 Moradi S, Mokhtari-Dizaji M, Ghassemi F, Sheibani S, Asadi Amoli F. Increasing the efficiency of the retinoblastoma brachytherapy protocol with ultrasonic hyperthermia and gold nanoparticles: a rabbit model. Int J Radiat Biol 2020;96:1614-27. [PMID: 33074061 DOI: 10.1080/09553002.2020.1838657] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
38 Agnass P, Rodermond HM, Zweije R, Sijbrands J, Vogel JA, van Lienden KP, van Gulik TM, van Veldhuisen E, Franken NAP, Oei AL, Kok HP, Besselink MG, Crezee J. HyCHEED System for Maintaining Stable Temperature Control during Preclinical Irreversible Electroporation Experiments at Clinically Relevant Temperature and Pulse Settings. Sensors (Basel) 2020;20:E6227. [PMID: 33142821 DOI: 10.3390/s20216227] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
39 Meng Y, Hynynen K, Lipsman N. Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nat Rev Neurol 2021;17:7-22. [PMID: 33106619 DOI: 10.1038/s41582-020-00418-z] [Cited by in Crossref: 77] [Cited by in F6Publishing: 84] [Article Influence: 25.7] [Reference Citation Analysis]
40 Zhu L, Lam D, Pacia CP, Gach HM, Partanen A, Talcott MR, Greco SC, Zoberi I, Hallahan DE, Chen H, Altman MB. Characterization of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-induced large-volume hyperthermia in deep and superficial targets in a porcine model. International Journal of Hyperthermia 2020;37:1159-73. [DOI: 10.1080/02656736.2020.1825836] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 1.3] [Reference Citation Analysis]
41 Curto S, Mulder HT, Aklan B, Mils O, Schmidt M, Lamprecht U, Peller M, Wessalowski R, Lindner LH, Fietkau R, Zips D, van Holthe N, Franckena M, Paulides MM, van Rhoon GC. A multi-institution study: comparison of the heating patterns of five different MR-guided deep hyperthermia systems using an anthropomorphic phantom. International Journal of Hyperthermia 2020;37:1103-15. [DOI: 10.1080/02656736.2020.1810331] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Luzhin AV, Avanesyan B, Velichko AK, Shender VO, Ovsyannikova N, Arapidi GP, Shnaider PV, Petrova NV, Kireev II, Razin SV, Kantidze OL. Chromatin Trapping of Factors Involved in DNA Replication and Repair Underlies Heat-Induced Radio- and Chemosensitization. Cells 2020;9:E1423. [PMID: 32521766 DOI: 10.3390/cells9061423] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
43 Sheehan K, Sheehan D, Sulaiman M, Padilla F, Moore D, Sheehan J, Xu Z. Investigation of the tumoricidal effects of sonodynamic therapy in malignant glioblastoma brain tumors. J Neurooncol 2020;148:9-16. [PMID: 32361864 DOI: 10.1007/s11060-020-03504-w] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
44 Paulides MM, Dobsicek Trefna H, Curto S, Rodrigues DB. Recent technological advancements in radiofrequency- andmicrowave-mediated hyperthermia for enhancing drug delivery. Adv Drug Deliv Rev 2020;163-164:3-18. [PMID: 32229271 DOI: 10.1016/j.addr.2020.03.004] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 14.0] [Reference Citation Analysis]
45 Sayyaf N, Tavazoei MS. Robust control of temperature during local hyperthermia of cancerous tumors. European Journal of Control 2020;52:67-77. [DOI: 10.1016/j.ejcon.2019.08.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
46 Seynhaeve ALB, Amin M, Haemmerich D, van Rhoon GC, Ten Hagen TLM. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020;163-164:125-44. [PMID: 32092379 DOI: 10.1016/j.addr.2020.02.004] [Cited by in Crossref: 70] [Cited by in F6Publishing: 78] [Article Influence: 23.3] [Reference Citation Analysis]
47 Gamboa L, Zamat AH, Kwong GA. Synthetic immunity by remote control. Theranostics 2020;10:3652-67. [PMID: 32206114 DOI: 10.7150/thno.41305] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
48 Ahmed S, Rajak BL, Gogoi M, Sarma HD. Magnetic nanoparticles mediated cancer hyperthermia. Smart Healthcare for Disease Diagnosis and Prevention 2020. [DOI: 10.1016/b978-0-12-817913-0.00016-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
49 Tharkar P, Varanasi R, Wong WSF, Jin CT, Chrzanowski W. Nano-Enhanced Drug Delivery and Therapeutic Ultrasound for Cancer Treatment and Beyond. Front Bioeng Biotechnol 2019;7:324. [PMID: 31824930 DOI: 10.3389/fbioe.2019.00324] [Cited by in Crossref: 71] [Cited by in F6Publishing: 76] [Article Influence: 17.8] [Reference Citation Analysis]
50 Guillemin PC, Gui L, Lorton O, Zilli T, Crowe LA, Desgranges S, Montet X, Terraz S, Miralbell R, Salomir R, Boudabbous S. Mild hyperthermia by MR-guided focused ultrasound in an ex vivo model of osteolytic bone tumour: optimization of the spatio-temporal control of the delivered temperature. J Transl Med 2019;17:350. [PMID: 31651311 DOI: 10.1186/s12967-019-2094-x] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]