BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Marimani M, Ahmad A, Duse A. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2018;113:200-14. [PMID: 30514504 DOI: 10.1016/j.tube.2018.10.009] [Cited by in Crossref: 20] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Allué-Guardia A, García JI, Torrelles JB. Evolution of Drug-Resistant Mycobacterium tuberculosis Strains and Their Adaptation to the Human Lung Environment. Front Microbiol 2021;12:612675. [PMID: 33613483 DOI: 10.3389/fmicb.2021.612675] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
2 Tambe PM, Bhowmick S, Chaudhary SK, Khan MR, Wabaidur SM, Muddassir M, Patil PC, Islam MA. Structure-Based Screening of DNA GyraseB Inhibitors for Therapeutic Applications in Tuberculosis: a Pharmacoinformatics Study. Appl Biochem Biotechnol 2020;192:1107-23. [PMID: 32686004 DOI: 10.1007/s12010-020-03374-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
3 Jõgi NO, Kitaba N, Storaas T, Schlünssen V, Triebner K, Holloway JW, Horsnell WGC, Svanes C, Bertelsen RJ. Ascaris exposure and its association with lung function, asthma, and DNA methylation in Northern Europe. J Allergy Clin Immunol 2021:S0091-6749(21)01797-8. [PMID: 34996616 DOI: 10.1016/j.jaci.2021.11.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Bhakhar KA, Gajjar ND, Bodiwala KB, Sureja DK, Dhameliya TM. Identification of anti-mycobacterial agents against mmpL3: Virtual screening, ADMET analysis and MD simulations. Journal of Molecular Structure 2021;1244:130941. [DOI: 10.1016/j.molstruc.2021.130941] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Chen YC, Lee CP, Hsiao CC, Hsu PY, Wang TY, Wu CC, Chao TY, Leung SY, Chang YP, Lin MC. MicroRNA-23a-3p Down-Regulation in Active Pulmonary Tuberculosis Patients with High Bacterial Burden Inhibits Mononuclear Cell Function and Phagocytosis through TLR4/TNF-α/TGF-β1/IL-10 Signaling via Targeting IRF1/SP1. Int J Mol Sci 2020;21:E8587. [PMID: 33202583 DOI: 10.3390/ijms21228587] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
6 Lundstrom K. Epigenetics: rethinking of drug research and development. Future Med Chem 2019. [PMID: 31741399 DOI: 10.4155/fmc-2019-0174] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
7 Sar P, Dalai S. CRISPR/Cas9 in epigenetics studies of health and disease. Prog Mol Biol Transl Sci 2021;181:309-43. [PMID: 34127198 DOI: 10.1016/bs.pmbts.2021.01.022] [Reference Citation Analysis]
8 Chang SH, Choe J, Ghandehari S, Chaux GE, Chung AP, Ramzy D, Megna DJ, Falk JA, Zakowski PC. Rapidly Growing Mycobacterium tuberculosis in the Form of Empyema Necessitans: A Case Report. J Intensive Care Med 2021;:8850666211044100. [PMID: 34515566 DOI: 10.1177/08850666211044100] [Reference Citation Analysis]
9 Kuldeep J, Sharma SK, Singh BN, Siddiqi MI. Computational exploration and anti-mycobacterial activity of potential inhibitors of Mycobacterium tuberculosis acetyl coenzyme A carboxylase as anti-tubercular agents. SAR QSAR Environ Res 2021;32:191-205. [PMID: 33612029 DOI: 10.1080/1062936X.2021.1882563] [Reference Citation Analysis]
10 Tarashi S, Badi SA, Moshiri A, Ebrahimzadeh N, Fateh A, Vaziri F, Aazami H, Siadat SD, Fuso A. The inter-talk between Mycobacterium tuberculosis and the epigenetic mechanisms. Epigenomics 2020;12:455-69. [PMID: 32267165 DOI: 10.2217/epi-2019-0187] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
11 Leiva F, Bravo S, Garcia KK, Moya J, Guzman O, Bascuñan N, Vidal R. Temporal genome-wide DNA methylation signature of post-smolt Pacific salmon challenged with Piscirickettsia salmonis. Epigenetics 2021;16:1335-46. [PMID: 33319647 DOI: 10.1080/15592294.2020.1864166] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Gauba K, Gupta S, Shekhawat J, Sharma P, Yadav D, Banerjee M. Immunomodulation by epigenome alterations in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2021;128:102077. [PMID: 33812175 DOI: 10.1016/j.tube.2021.102077] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Batista LAF, Silva KJS, da Costa E Silva LM, de Moura YF, Zucchi FCR. Tuberculosis: A granulomatous disease mediated by epigenetic factors. Tuberculosis (Edinb) 2020;123:101943. [PMID: 32741528 DOI: 10.1016/j.tube.2020.101943] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
14 Sui J, Qiao W, Xiang X, Luo Y. Epigenetic Changes in Mycobacterium tuberculosis and its Host Provide Potential Targets or Biomarkers for Drug Discovery and Clinical Diagnosis. Pharmacological Research 2022. [DOI: 10.1016/j.phrs.2022.106195] [Reference Citation Analysis]
15 de Araujo LS, Ribeiro-Alves M, Leal-Calvo T, Leung J, Durán V, Samir M, Talbot S, Tallam A, Mello FCQ, Geffers R, Saad MHF, Pessler F. Reprogramming of Small Noncoding RNA Populations in Peripheral Blood Reveals Host Biomarkers for Latent and Active Mycobacterium tuberculosis Infection. mBio 2019;10:e01037-19. [PMID: 31796535 DOI: 10.1128/mBio.01037-19] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
16 Golubinskaya E, Filonenko T, Kramar T, Yermola Y, Kubyshkin A, Gerashenko A, Kalfa M, Shramko I. Dysregulation of VEGF-dependent angiogenesis in cavernous lung tuberculosis. Pathophysiology 2019;26:381-7. [DOI: 10.1016/j.pathophys.2019.11.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
17 Goossens SN, Sampson SL, Van Rie A. Mechanisms of Drug-Induced Tolerance in Mycobacterium tuberculosis. Clin Microbiol Rev 2020;34:e00141-20. [PMID: 33055230 DOI: 10.1128/CMR.00141-20] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
18 Vavougios GD, Zarogiannis S, Barh D, Breza M, Krogfelt KA, Stamoulis G, Gourgoulianis KI. Innate immunity and metal ion trafficking pathway perturbations in idiopathic Parkinson's disease and Tuberculosis: A comparative transcriptomics approach. Brain Disorders 2021;4:100025. [DOI: 10.1016/j.dscb.2021.100025] [Reference Citation Analysis]
19 Zhang T, Rao G, Gao X. Identification of Hub Genes in Tuberculosis via Bioinformatics Analysis. Comput Math Methods Med 2021;2021:8159879. [PMID: 34671419 DOI: 10.1155/2021/8159879] [Reference Citation Analysis]
20 Yang H, Gan D, Li Y, Wang X, Jin L, Qin K, Cui C, Wu J, Wang Z. Quyushengxin Formula Causes Differences in Bacterial and Phage Composition in Ulcerative Colitis Patients. Evid Based Complement Alternat Med 2020;2020:5859023. [PMID: 32454865 DOI: 10.1155/2020/5859023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
21 Ghermi M, Reguieg S, Attab K, Mened N, Ghomari N, Guendouz Elghoul FZ, Saichi F, Bossi S, Bouali-Youcef Y, Bey Baba Hamed M, Kallel Sellami M. Interferon-γ (+874 T/A) and interleukin-10 (-1082 G/A) genes polymorphisms are associated with active tuberculosis in the Algerian population of Oran's city. Indian J Tuberc 2021;68:221-9. [PMID: 33845956 DOI: 10.1016/j.ijtb.2020.08.015] [Reference Citation Analysis]
22 Kaipilyawar V, Salgame P. Infection resisters: targets of new research for uncovering natural protective immunity against Mycobacterium tuberculosis. F1000Res 2019;8:F1000 Faculty Rev-1698. [PMID: 31602294 DOI: 10.12688/f1000research.19805.1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]