BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Singh S, Singh G, Bala N. Electrophoretic deposition of hydroxyapatite-iron oxide-chitosan composite coatings on Ti–13Nb–13Zr alloy for biomedical applications. Thin Solid Films 2020;697:137801. [DOI: 10.1016/j.tsf.2020.137801] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 6.5] [Reference Citation Analysis]
Number Citing Articles
1 Raihan MM, Otsuka Y, Tsuchida K, Manonukul A, Ohnuma K, Miyashita Y. Damage evaluation of HAp-coated porous titanium foam in simulated body fluid based on compression fatigue behavior. J Mech Behav Biomed Mater 2021;117:104383. [PMID: 33596530 DOI: 10.1016/j.jmbbm.2021.104383] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
2 Mahmoodi M, Hydari MH, Mahmoodi L, Gazanfari L, Mirhaj M. Electrophoretic deposition of graphene oxide reinforced hydroxyapatite on the tantalum substrate for bone implant applications: In vitro corrosion and bio-tribological behavior. Surface and Coatings Technology 2021;424:127642. [DOI: 10.1016/j.surfcoat.2021.127642] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
3 Hussain M, Askari Rizvi SH, Abbas N, Sajjad U, Shad MR, Badshah MA, Malik AI. Recent Developments in Coatings for Orthopedic Metallic Implants. Coatings 2021;11:791. [DOI: 10.3390/coatings11070791] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
4 Majkowska-marzec B, Sypniewska J. Microstructure and Mechanical Properties of Laser Surface-Treated Ti13Nb13Zr Alloy with MWCNTs Coatings. Advances in Materials Science 2021;21:5-18. [DOI: 10.2478/adms-2021-0021] [Reference Citation Analysis]
5 Liang SX, Liu KY, Yin LX, Huang GW, Shi YD, Zheng LY, Xing ZG. Review of major technologies improving surface performances of Ti alloys for implant biomaterials. Journal of Vacuum Science & Technology A 2022;40:030801. [DOI: 10.1116/6.0001801] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Asgari N, Rajabi M. Electrophoretic deposition of biocompatible composite coatings containing hydroxyapatite, alumina, and yttria-stabilized zirconia from iodine-stabilized acetone/isopropanol suspensions. J Aust Ceram Soc 2021;57:1479-88. [DOI: 10.1007/s41779-021-00652-8] [Reference Citation Analysis]
7 Raji R, Elangomannan S, Subramani R, Louis K, Periasamy M, Dhanaraj G. Calotropis Gigantea Fiber-A Biogenic Reinforcement Material for Europium Substituted Hydroxyapatite/Poly(3,4-propylenedioxythiophene) Matrix: A Novel Ternary Composite for Biomedical Applications. ACS Omega 2022;7:6024-34. [PMID: 35224363 DOI: 10.1021/acsomega.1c06372] [Reference Citation Analysis]
8 Predoi D, Iconaru SL, Ciobanu SC, Predoi S, Buton N, Megier C, Beuran M. Development of Iron-Doped Hydroxyapatite Coatings. Coatings 2021;11:186. [DOI: 10.3390/coatings11020186] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 7.0] [Reference Citation Analysis]
9 Sari M, Kristianto N, Chotimah, Ana I, Yusuf Y. Carbonated Hydroxyapatite-Based Honeycomb Scaffold Coatings on a Titanium Alloy for Bone Implant Application—Physicochemical and Mechanical Properties Analysis. Coatings 2021;11:941. [DOI: 10.3390/coatings11080941] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
10 Cao J, Lian R, Jiang X, Rogachev AV. In vitro degradation assessment of calcium fluoride-doped hydroxyapatite coating prepared by pulsed laser deposition. Surface and Coatings Technology 2021;416:127177. [DOI: 10.1016/j.surfcoat.2021.127177] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]