BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sadeghi P, Sohrabi H, Hejazi M, Jahanban-Esfahlan A, Baradaran B, Tohidast M, Majidi MR, Mokhtarzadeh A, Tavangar SM, de la Guardia M. Lateral flow assays (LFA) as an alternative medical diagnosis method for detection of virus species: The intertwine of nanotechnology with sensing strategies. Trends Analyt Chem 2021;145:116460. [PMID: 34697511 DOI: 10.1016/j.trac.2021.116460] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Gul I, Liu C, Yuan X, Du Z, Zhai S, Lei Z, Chen Q, Raheem MA, He Q, Hu Q, Xiao C, Haihui Z, Wang R, Han S, Du K, Yu D, Zhang CY, Qin P. Current and Perspective Sensing Methods for Monkeypox Virus. Bioengineering 2022;9:571. [DOI: 10.3390/bioengineering9100571] [Reference Citation Analysis]
2 Guo Z, Xing G, Li P, Jin Q, Lu Q, Zhang G. Development and application of a recombinase-aided amplification and lateral flow assay for rapid detection of pseudorabies virus from clinical crude samples. International Journal of Biological Macromolecules 2022. [DOI: 10.1016/j.ijbiomac.2022.10.153] [Reference Citation Analysis]
3 Vera-Estrada IL, Olivares-Ramírez JM, Rodríguez-Reséndiz J, Dector A, Mendiola-Santibañez JD, Amaya-Cruz DM, Sosa-Domínguez A, Ortega-Díaz D, Dector D, Ovando-Medina VM, Antonio-Carmona ID. Digital Pregnancy Test Powered by an Air-Breathing Paper-Based Microfluidic Fuel Cell Stack Using Human Urine as Fuel. Sensors (Basel) 2022;22:6641. [PMID: 36081100 DOI: 10.3390/s22176641] [Reference Citation Analysis]
4 Deng C, Li H, Qian S, Fu P, Zhou H, Zheng J, Wang Y. An Emerging Fluorescent Carbon Nanobead Label Probe for Lateral Flow Assays and Highly Sensitive Screening of Foodborne Toxins and Pathogenic Bacteria. Anal Chem 2022. [PMID: 35959591 DOI: 10.1021/acs.analchem.2c01430] [Reference Citation Analysis]
5 He F, Lv X, Li X, Yao M, Li K, Deng Y. Fluorescent microspheres lateral flow assay integrated with Smartphone-based reader for multiple microRNAs detection. Microchemical Journal 2022;179:107551. [DOI: 10.1016/j.microc.2022.107551] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Maroju PA, Ganesan R, Dutta JR. Fluorescence-based simultaneous dual oligo sensing of HCV genotypes 1 and 3 using magnetite nanoparticles. J Photochem Photobiol B 2022;232:112463. [PMID: 35567883 DOI: 10.1016/j.jphotobiol.2022.112463] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Asghari S, Ekrami E, Barati F, Avatefi M, Mahmoudifard M. The role of the nanofibers in lateral flow assays enhancement: a critical review. International Journal of Polymeric Materials and Polymeric Biomaterials. [DOI: 10.1080/00914037.2022.2090360] [Reference Citation Analysis]
8 Kumar S, Sharma R, Bhawna, Gupta A, Singh P, Kalia S, Thakur P, Kumar V. Prospects of Biosensors Based on Functionalized and Nanostructured Solitary Materials: Detection of Viral Infections and Other Risks. ACS Omega. [DOI: 10.1021/acsomega.2c01033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Sohrabi H, Bolandi N, Hemmati A, Eyvazi S, Ghasemzadeh S, Baradaran B, Oroojalian F, Reza Majidi M, de la Guardia M, Mokhtarzadeh A. State-of-the-art cancer biomarker detection by portable (Bio) sensing technology: A critical review. Microchemical Journal 2022;177:107248. [DOI: 10.1016/j.microc.2022.107248] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
10 Zhang Y, Chai Y, Hu Z, Xu Z, Li M, Chen X, Yang C, Liu J. Recent Progress on Rapid Lateral Flow Assay-Based Early Diagnosis of COVID-19. Front Bioeng Biotechnol 2022;10:866368. [PMID: 35592553 DOI: 10.3389/fbioe.2022.866368] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
11 Sohrabi H, Majidi MR, Khaki P, Jahanban-Esfahlan A, de la Guardia M, Mokhtarzadeh A. State of the art: Lateral flow assays toward the point-of-care foodborne pathogenic bacteria detection in food samples. Compr Rev Food Sci Food Saf 2022. [PMID: 35194932 DOI: 10.1111/1541-4337.12913] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
12 Kawasaki H, Suzuki H, Furuhashi K, Yamashita K, Ishikawa J, Nagura O, Maekawa M, Miwa T, Tandou T, Hariyama T. Highly Sensitive and Quantitative Diagnosis of SARS-CoV-2 Using a Gold/Platinum Particle-Based Lateral Flow Assay and a Desktop Scanning Electron Microscope. Biomedicines 2022;10:447. [DOI: 10.3390/biomedicines10020447] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Sohrabi H, Majidi MR, Fakhraei M, Jahanban-esfahlan A, Hejazi M, Oroojalian F, Baradaran B, Tohidast M, Guardia MDL, Mokhtarzadeh A. Lateral flow assays (LFA) for detection of pathogenic bacteria: A small point-of-care platform for diagnosis of human infectious diseases. Talanta 2022. [DOI: 10.1016/j.talanta.2022.123330] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
14 Rajasulochana P, Ganesan Y, Kumar PS, Mahalaxmi S, Tasneem F, Ponnuchamy M, Kapoor A. Paper-based microfluidic colorimetric sensor on a 3D printed support for quantitative detection of nitrite in aquatic environments. Environ Res 2022;:112745. [PMID: 35051426 DOI: 10.1016/j.envres.2022.112745] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
15 Majdinasab M, Badea M, Marty JL. Aptamer-Based Lateral Flow Assays: Current Trends in Clinical Diagnostic Rapid Tests. Pharmaceuticals 2022;15:90. [DOI: 10.3390/ph15010090] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
16 Roberts A, Prakashan D, Dhanze H, Gandham RK, Gandhi S, Sharma GT. Immuno-chromatic probe based lateral flow assay for point-of-care detection of Japanese encephalitis virus NS1 protein biomarker in clinical samples using a smartphone-based approach. Nanoscale Adv . [DOI: 10.1039/d2na00463a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 B. S. A. S. S, J. L. R. C, I. C. C, J. M. C. C, B. C. L, G. C. F. G, P. H. S. M. D, G. M. M. M, F. G. F, J. S. A, A. A. P. M, M. F. L, R. L. O, Z. I. P. L, H. S. M. Nanotechnology meets immunology towards a rapid diagnosis solution: the COVID-19 outbreak challenge. RSC Adv 2022;12:31711-31728. [DOI: 10.1039/d2ra05096j] [Reference Citation Analysis]