BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: García-guzmán JJ, Pérez-ràfols C, Cuartero M, Crespo GA. Microneedle based electrochemical (Bio)Sensing: Towards decentralized and continuous health status monitoring. TrAC Trends in Analytical Chemistry 2021;135:116148. [DOI: 10.1016/j.trac.2020.116148] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Wang Q, Molinero-Fernandez A, Casanova A, Titulaer J, Campillo-Brocal JC, Konradsson-Geuken Å, Crespo GA, Cuartero M. Intradermal Glycine Detection with a Wearable Microneedle Biosensor: The First In Vivo Assay. Anal Chem 2022. [PMID: 35979995 DOI: 10.1021/acs.analchem.2c02317] [Reference Citation Analysis]
2 Xu J, Yan Z, Liu Q. Smartphone-Based Electrochemical Systems for Glucose Monitoring in Biofluids: A Review. Sensors 2022;22:5670. [DOI: 10.3390/s22155670] [Reference Citation Analysis]
3 Sahragard A, Varanusupakul P, Miró M. Interfacing liquid-phase microextraction with electrochemical detection: A critical review. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116749] [Reference Citation Analysis]
4 Van Hoovels K, Xuan X, Cuartero M, Gijssel M, Swarén M, Crespo GA. Can Wearable Sweat Lactate Sensors Contribute to Sports Physiology? ACS Sens 2021;6:3496-508. [PMID: 34549938 DOI: 10.1021/acssensors.1c01403] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
5 Zhu B, Li X, Zhou L, Su B. An Overview of Wearable and Implantable Electrochemical Glucose Sensors. Electroanalysis 2022;34:237-45. [DOI: 10.1002/elan.202100273] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
6 Ortone V, Matino L, Santoro F, Cinti S. Merging office/filter paper-based tools for pre-concentring and detecting heavy metals in drinking water. Chem Commun (Camb) 2021;57:7100-3. [PMID: 34169301 DOI: 10.1039/d1cc02481g] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
7 Ahmad NN, Ghazali NNN, Wong YH. Concept Design of Transdermal Microneedles for Diagnosis and Drug Delivery: A Review. Adv Eng Mater 2021;23:2100503. [DOI: 10.1002/adem.202100503] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Kashaninejad N, Munaz A, Moghadas H, Yadav S, Umer M, Nguyen N. Microneedle Arrays for Sampling and Sensing Skin Interstitial Fluid. Chemosensors 2021;9:83. [DOI: 10.3390/chemosensors9040083] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
9 García-Guzmán JJ, Pérez-Ràfols C, Cuartero M, Crespo GA. Toward In Vivo Transdermal pH Sensing with a Validated Microneedle Membrane Electrode. ACS Sens 2021;6:1129-37. [PMID: 33566575 DOI: 10.1021/acssensors.0c02397] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
10 Wang Q, Liu Y, Campillo-Brocal JC, Jiménez-Quero A, Crespo GA, Cuartero M. Electrochemical biosensor for glycine detection in biological fluids. Biosens Bioelectron 2021;182:113154. [PMID: 33773381 DOI: 10.1016/j.bios.2021.113154] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
11 Lu H, He B, Gao B. Emerging electrochemical sensors for life healthcare. Engineered Regeneration 2021;2:175-81. [DOI: 10.1016/j.engreg.2021.12.002] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
12 Hui J, Mao H. Role of portable and wearable sensors in era of electronic healthcare and medical internet of things. Clinical eHealth 2021;4:62-6. [DOI: 10.1016/j.ceh.2021.11.001] [Cited by in F6Publishing: 1] [Reference Citation Analysis]