BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hai X, Li Y, Zhu C, Song W, Cao J, Bi S. DNA-based label-free electrochemical biosensors: From principles to applications. TrAC Trends in Analytical Chemistry 2020;133:116098. [DOI: 10.1016/j.trac.2020.116098] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 5.5] [Reference Citation Analysis]
Number Citing Articles
1 Xie X, Wang Z, Zhou M, Xing Y, Chen Y, Huang J, Cai K, Zhang J. Redox Host-Guest Nanosensors Installed with DNA Gatekeepers for Immobilization-Free and Ratiometric Electrochemical Detection of miRNA. Small Methods 2021;5:e2101072. [PMID: 34928007 DOI: 10.1002/smtd.202101072] [Reference Citation Analysis]
2 Jiang Y, Li S, Zhu P, Zhao J, Xiong X, Wu Y, Zhang X, Li Y, Song T, Xiao W, Wang Z, Han J. Electrochemical DNA Biosensors Based on the Intrinsic Topological Insulator BiSbTeSe2 for Potential Application in HIV Determination. ACS Appl Bio Mater 2022. [PMID: 35157417 DOI: 10.1021/acsabm.1c01153] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zhang K, Li J, Fan Z, Li H, Xu JJ. "Covalent biosensing" enables a one-step, reagent-less, low-cost and highly robust assay of SARS-CoV-2. Chem Commun (Camb) 2021;57:10771-4. [PMID: 34585685 DOI: 10.1039/d1cc03686f] [Reference Citation Analysis]
4 Melinte G, Hosu O, Cristea C, Marrazza G. DNA sensing technology a useful food scanning tool. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116679] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Tevatia R, Chan A, Oltmanns L, Lim JM, Christensen A, Stoller M, Saraf RF. Electrochemical Beacon Method to Quantify 10 Attomolar Nucleic Acids with a Semilog Dynamic Range of 7 Orders of Magnitude. Anal Chem 2021;93:16409-16. [PMID: 34843203 DOI: 10.1021/acs.analchem.1c03020] [Reference Citation Analysis]
6 Lu H, He B, Gao B. Emerging electrochemical sensors for life healthcare. Engineered Regeneration 2021;2:175-81. [DOI: 10.1016/j.engreg.2021.12.002] [Reference Citation Analysis]
7 Guo Z, Yao Q, Zheng W, Jiao R, Zhang C, Zhang L, Ye T, Chen X. Highly crosslinking core–shell magnetic nanocomposites based catalyst and heat free polymerization for isolation of glycoprotein. Anal Bioanal Chem. [DOI: 10.1007/s00216-022-04202-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Fan L, Huang JJ, Liao J. Competitive smartphone-based portable electrochemical aptasensor system based on an MXene/cDNA-MB probe for the determination of Microcystin-LR. Sensors and Actuators B: Chemical 2022;369:132164. [DOI: 10.1016/j.snb.2022.132164] [Reference Citation Analysis]
9 Saha U, Todi K, Malhotra BD. Emerging DNA-based multifunctional nano-biomaterials towards electrochemical sensing applications. Nanoscale 2021;13:10305-19. [PMID: 34086027 DOI: 10.1039/d1nr02409d] [Reference Citation Analysis]
10 Prakash J, Uppal S, Kaushal A, Dasgupta K. Effect of O/N doping in CNT aerogel film on their nucleic acid hybridization detection ability as electrochemical impedance biosensor. Materials Today Communications 2022;32:103965. [DOI: 10.1016/j.mtcomm.2022.103965] [Reference Citation Analysis]
11 Yuxin X, Laipeng S, Kang L, Haipeng S, Zonghua W, Wenjing W. Metal-doped carbon dots as peroxidase mimic for hydrogen peroxide and glucose detection. Anal Bioanal Chem. [DOI: 10.1007/s00216-022-04149-6] [Reference Citation Analysis]
12 Izadi N, Sebuyoya R, Moranova L, Hrstka R, Anton M, Bartosik M. Electrochemical bioassay coupled to LAMP reaction for determination of high-risk HPV infection in crude lysates. Anal Chim Acta 2021;1187:339145. [PMID: 34753575 DOI: 10.1016/j.aca.2021.339145] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Chen F, Fu X, Meng Y, Jiang M, Wang J, Zhou YL, Zhang DW. A novel miniaturized homogeneous label-free electrochemical biosensing platform combining integrated microelectrode and functional nucleic acids. Anal Chim Acta 2021;1158:338415. [PMID: 33863408 DOI: 10.1016/j.aca.2021.338415] [Reference Citation Analysis]
14 Thapa K, Liu W, Wang R. Nucleic acid-based electrochemical biosensor: Recent advances in probe immobilization and signal amplification strategies. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;:e1765. [PMID: 34734485 DOI: 10.1002/wnan.1765] [Reference Citation Analysis]
15 Yue S, Qiao Z, Wang X, Bi S. Enzyme-free catalyzed self-assembly of three-dimensional hyperbranched DNA structures for in situ SERS imaging and molecular logic operations. Chemical Engineering Journal 2022;446:136838. [DOI: 10.1016/j.cej.2022.136838] [Reference Citation Analysis]
16 Congur G. An up-to-date review about (bio)sensor systems developed for detection of glyphosate. International Journal of Environmental Analytical Chemistry. [DOI: 10.1080/03067319.2021.1950149] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zheng Y, Zhao Y, Bai M, Gu H, Li X. Metal-organic frameworks as a therapeutic strategy for lung diseases. J Mater Chem B 2022. [PMID: 35848605 DOI: 10.1039/d2tb00690a] [Reference Citation Analysis]
18 Song X, Gao H, Yuan R, Xiang Y. Trimetallic nanoparticle-decorated MXene nanosheets for catalytic electrochemical detection of carcinoembryonic antigen via Exo III-aided dual recycling amplifications. Sensors and Actuators B: Chemical 2022;359:131617. [DOI: 10.1016/j.snb.2022.131617] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Nur Ashakirin Binti M. Nashruddin S, Aniq Shazni M. Haniff M, Hazani M. Zaid M, Mahmoudi E, Farhanulhakim M. Razip Wee M. Urease silver reduced graphene oxide modified screen-printed carbon electrode for urea detection. Measurement 2022. [DOI: 10.1016/j.measurement.2022.111058] [Reference Citation Analysis]
20 Lu Y, Rong X, Wu P, Shou J, Chen L, Luo F, Lin C, Wang J, Qiu B, Lin Z. Sensitive Electrochemiluminescence Biosensor Based on the Target Trigger Difference of the Electrostatic Interaction between an ECL Reporter and the Electrode Surface. Anal Chem 2022. [PMID: 35385271 DOI: 10.1021/acs.analchem.1c05258] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Yu K, Qiao Z, Song W, Bi S. DNA Nanotechnology for Multimodal Synergistic Theranostics. J Anal Test 2021;5:112-29. [DOI: 10.1007/s41664-021-00182-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Huang C, Wang X, Zhang Z, Zhang L, Zang D, Ge S, Yu J. Photoelectrochemical platform with tailorable anode-cathode activities based on semiconductors coupling DNA walker for detection of miRNA. Sensors and Actuators B: Chemical 2022;365:131969. [DOI: 10.1016/j.snb.2022.131969] [Reference Citation Analysis]
23 de Faria LV, Lisboa TP, Campos NDS, Alves GF, Matos MAC, Matos RC, Munoz RAA. Electrochemical methods for the determination of antibiotic residues in milk: A critical review. Anal Chim Acta 2021;1173:338569. [PMID: 34172150 DOI: 10.1016/j.aca.2021.338569] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Shen Y, Jia F, Liang A, He Y, Peng Y, Dai H, Fu Y, Wang J, Li Y. Monovalent Antigen-Induced Aggregation (MAA) Biosensors Using Immunomagnetic Beads in Both Sample Separation and Signal Generation for Label-Free Detection of Enrofloxacin. ACS Appl Mater Interfaces 2022;14:8816-23. [PMID: 35133806 DOI: 10.1021/acsami.1c23398] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Yu K, Qiao Z, Song W, Bi S. Correction to: DNA Nanotechnology for Multimodal Synergistic Theranostics. J Anal Test 2021;5:397-402. [DOI: 10.1007/s41664-021-00190-z] [Reference Citation Analysis]