BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu R, Li Z, Huang Z, Li K, Lv Y. Biosensors for explosives: State of art and future trends. TrAC Trends in Analytical Chemistry 2019;118:123-37. [DOI: 10.1016/j.trac.2019.05.034] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Karadurmus L, Bilge S, Sınağ A, Ozkan SA. Molecularly imprinted polymer (MIP)-Based sensing for detection of explosives: Current perspectives and future applications. TrAC Trends in Analytical Chemistry 2022;155:116694. [DOI: 10.1016/j.trac.2022.116694] [Reference Citation Analysis]
2 Han Y, Tao J, Ali N, Khan A, Malik S, Khan H, Yu C, Yang Y, Bilal M, Mohamed AA. Molecularly imprinted polymers as the epitome of excellence in multiple fields. European Polymer Journal 2022;179:111582. [DOI: 10.1016/j.eurpolymj.2022.111582] [Reference Citation Analysis]
3 Wasilewski T, Neubauer D, Kamysz W, Gębicki J. Recent progress in the development of peptide-based gas biosensors for environmental monitoring. Case Studies in Chemical and Environmental Engineering 2022;5:100197. [DOI: 10.1016/j.cscee.2022.100197] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Kalva N, Tran CH, Lee MW, Augustine R, Lee SJ, Kim I. Aggregation-induced emission-active hyperbranched polymers conjugated with tetraphenylethylene for nitroaromatic explosive detection. Dyes and Pigments 2021;194:109617. [DOI: 10.1016/j.dyepig.2021.109617] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
5 Adegoke O, Nic Daeid N. Colorimetric optical nanosensors for trace explosive detection using metal nanoparticles: advances, pitfalls, and future perspective. Emerg Top Life Sci 2021;5:367-79. [PMID: 33960382 DOI: 10.1042/ETLS20200281] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
6 Wasilewski T, Gębicki J, Kamysz W. Bio-inspired approaches for explosives detection. TrAC Trends in Analytical Chemistry 2021;142:116330. [DOI: 10.1016/j.trac.2021.116330] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
7 Wasilewski T, Gębicki J. Emerging strategies for enhancing detection of explosives by artificial olfaction. Microchemical Journal 2021;164:106025. [DOI: 10.1016/j.microc.2021.106025] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
8 Fan J, Meng Z, Dong X, Xue M, Qiu L, Liu X, Zhong F, He X. Colorimetric screening of nitramine explosives by molecularly imprinted photonic crystal array. Microchemical Journal 2020;158:105143. [DOI: 10.1016/j.microc.2020.105143] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
9 Kim M, Ahn J, Kim D, Bae J, Yun D. Hot Embossing Process Technology Forming Arbitrary Patterns in Real Time. Adv Mater Technol 2020;5:2000459. [DOI: 10.1002/admt.202000459] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Schachel TD, Stork A, Schulte-ladbeck R, Vielhaber T, Karst U. Identification and differentiation of commercial and military explosives via high performance liquid chromatography – high resolution mass spectrometry (HPLC-HRMS), X-ray diffractometry (XRD) and X-ray fluorescence spectroscopy (XRF): Towards a forensic substance database on explosives. Forensic Science International 2020;308:110180. [DOI: 10.1016/j.forsciint.2020.110180] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
11 Volana Randriamandimbisoa M, Manitra Nany Razafindralambo NA, Fakra D, Lucia Ravoajanahary D, Claude Gatina J, Jaffrezic-renault N. Electrical response of plants to environmental stimuli: A short review and perspectives for meteorological applications. Sensors International 2020;1:100053. [DOI: 10.1016/j.sintl.2020.100053] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Wu J, Zhang L, Huang F, Ji X, Dai H, Wu W. Surface enhanced Raman scattering substrate for the detection of explosives: Construction strategy and dimensional effect. J Hazard Mater 2020;387:121714. [PMID: 31818672 DOI: 10.1016/j.jhazmat.2019.121714] [Cited by in Crossref: 15] [Cited by in F6Publishing: 26] [Article Influence: 5.0] [Reference Citation Analysis]
13 Rawtani D, Tharmavaram M, Pandey G, Hussain CM. Functionalized nanomaterial for forensic sample analysis. TrAC Trends in Analytical Chemistry 2019;120:115661. [DOI: 10.1016/j.trac.2019.115661] [Cited by in Crossref: 52] [Cited by in F6Publishing: 14] [Article Influence: 17.3] [Reference Citation Analysis]