BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ober D. Seeing double: gene duplication and diversification in plant secondary metabolism. Trends Plant Sci 2005;10:444-9. [PMID: 16054418 DOI: 10.1016/j.tplants.2005.07.007] [Cited by in Crossref: 107] [Cited by in F6Publishing: 94] [Article Influence: 6.3] [Reference Citation Analysis]
Number Citing Articles
1 Frölich C, Hartmann T, Ober D. Tissue distribution and biosynthesis of 1,2-saturated pyrrolizidine alkaloids in Phalaenopsis hybrids (Orchidaceae). Phytochemistry 2006;67:1493-502. [PMID: 16815502 DOI: 10.1016/j.phytochem.2006.05.031] [Cited by in Crossref: 32] [Cited by in F6Publishing: 29] [Article Influence: 2.0] [Reference Citation Analysis]
2 Ng DW, Wang T, Chandrasekharan MB, Aramayo R, Kertbundit S, Hall TC. Plant SET domain-containing proteins: structure, function and regulation. Biochim Biophys Acta 2007;1769:316-29. [PMID: 17512990 DOI: 10.1016/j.bbaexp.2007.04.003] [Cited by in Crossref: 105] [Cited by in F6Publishing: 93] [Article Influence: 7.0] [Reference Citation Analysis]
3 Deng X, Zhao L, Fang T, Xiong Y, Ogutu C, Yang D, Vimolmangkang S, Liu Y, Han Y. Investigation of benzylisoquinoline alkaloid biosynthetic pathway and its transcriptional regulation in lotus. Hortic Res 2018;5:29. [PMID: 29872534 DOI: 10.1038/s41438-018-0035-0] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
4 Zhao N, Wang G, Norris A, Chen X, Chen F. Studying Plant Secondary Metabolism in the Age of Genomics. Critical Reviews in Plant Sciences 2013;32:369-82. [DOI: 10.1080/07352689.2013.789648] [Cited by in Crossref: 32] [Cited by in F6Publishing: 12] [Article Influence: 3.6] [Reference Citation Analysis]
5 Hartmann T. The lost origin of chemical ecology in the late 19th century. Proc Natl Acad Sci U S A 2008;105:4541-6. [PMID: 18218780 DOI: 10.1073/pnas.0709231105] [Cited by in Crossref: 69] [Cited by in F6Publishing: 47] [Article Influence: 4.9] [Reference Citation Analysis]
6 van Dam NM, Poppy GM. Why plant volatile analysis needs bioinformatics--detecting signal from noise in increasingly complex profiles. Plant Biol (Stuttg) 2008;10:29-37. [PMID: 18211546 DOI: 10.1055/s-2007-964961] [Cited by in Crossref: 49] [Cited by in F6Publishing: 44] [Article Influence: 3.5] [Reference Citation Analysis]
7 Krishnamurthy P, Tsukamoto C, Ishimoto M. Reconstruction of the Evolutionary Histories of UGT Gene Superfamily in Legumes Clarifies the Functional Divergence of Duplicates in Specialized Metabolism. Int J Mol Sci 2020;21:E1855. [PMID: 32182686 DOI: 10.3390/ijms21051855] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
8 Peng M, Gao Y, Chen W, Wang W, Shen S, Shi J, Wang C, Zhang Y, Zou L, Wang S, Wan J, Liu X, Gong L, Luo J. Evolutionarily Distinct BAHD N-Acyltransferases Are Responsible for Natural Variation of Aromatic Amine Conjugates in Rice. Plant Cell 2016;28:1533-50. [PMID: 27354554 DOI: 10.1105/tpc.16.00265] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 1.5] [Reference Citation Analysis]
9 Ono E, Homma Y, Horikawa M, Kunikane-Doi S, Imai H, Takahashi S, Kawai Y, Ishiguro M, Fukui Y, Nakayama T. Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera). Plant Cell 2010;22:2856-71. [PMID: 20693356 DOI: 10.1105/tpc.110.074625] [Cited by in Crossref: 102] [Cited by in F6Publishing: 92] [Article Influence: 8.5] [Reference Citation Analysis]
10 Henery ML, Moran GF, Wallis IR, Foley WJ. Identification of quantitative trait loci influencing foliar concentrations of terpenes and formylated phloroglucinol compounds in Eucalyptus nitens. New Phytol 2007;176:82-95. [PMID: 17696979 DOI: 10.1111/j.1469-8137.2007.02159.x] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 2.3] [Reference Citation Analysis]
11 Cheung MY, Xue Y, Zhou L, Li MW, Sun SS, Lam HM. An ancient P-loop GTPase in rice is regulated by a higher plant-specific regulatory protein. J Biol Chem 2010;285:37359-69. [PMID: 20876569 DOI: 10.1074/jbc.M110.172080] [Cited by in Crossref: 22] [Cited by in F6Publishing: 16] [Article Influence: 1.8] [Reference Citation Analysis]
12 Vimolmangkang S, Deng X, Owiti A, Meelaph T, Ogutu C, Han Y. Evolutionary origin of the NCSI gene subfamily encoding norcoclaurine synthase is associated with the biosynthesis of benzylisoquinoline alkaloids in plants. Sci Rep 2016;6:26323. [PMID: 27189519 DOI: 10.1038/srep26323] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
13 Ding L, Hofius D, Hajirezaei M, Fernie AR, Börnke F, Sonnewald U. Functional analysis of the essential bifunctional tobacco enzyme 3-dehydroquinate dehydratase/shikimate dehydrogenase in transgenic tobacco plants. Journal of Experimental Botany 2007;58:2053-67. [DOI: 10.1093/jxb/erm059] [Cited by in Crossref: 48] [Cited by in F6Publishing: 40] [Article Influence: 3.2] [Reference Citation Analysis]
14 Van Dolah FM, Zippay ML, Pezzolesi L, Rein KS, Johnson JG, Morey JS, Wang Z, Pistocchi R. Subcellular localization of dinoflagellate polyketide synthases and fatty acid synthase activity. J Phycol 2013;49:1118-27. [PMID: 27007632 DOI: 10.1111/jpy.12120] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 2.3] [Reference Citation Analysis]
15 Anke S, Gondé D, Kaltenegger E, Hänsch R, Theuring C, Ober D. Pyrrolizidine alkaloid biosynthesis in Phalaenopsis orchids: developmental expression of alkaloid-specific homospermidine synthase in root tips and young flower buds. Plant Physiol 2008;148:751-60. [PMID: 18701671 DOI: 10.1104/pp.108.124859] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 1.0] [Reference Citation Analysis]
16 Yoneyama K, Akashi T, Aoki T. Molecular Characterization of Soybean Pterocarpan 2-Dimethylallyltransferase in Glyceollin Biosynthesis: Local Gene and Whole-Genome Duplications of Prenyltransferase Genes Led to the Structural Diversity of Soybean Prenylated Isoflavonoids. Plant Cell Physiol 2016;57:2497-509. [PMID: 27986914 DOI: 10.1093/pcp/pcw178] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 5.6] [Reference Citation Analysis]
17 Akashi T, Sasaki K, Aoki T, Ayabe S, Yazaki K. Molecular cloning and characterization of a cDNA for pterocarpan 4-dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin, a soybean phytoalexin. Plant Physiol 2009;149:683-93. [PMID: 19091879 DOI: 10.1104/pp.108.123679] [Cited by in Crossref: 85] [Cited by in F6Publishing: 76] [Article Influence: 6.1] [Reference Citation Analysis]
18 Li HM, Rotter D, Hartman TG, Pak FE, Havkin-frenkel D, Belanger FC. Evolution of Novel O-methyltransferases from the Vanilla planifolia Caffeic Acid O-methyltransferase. Plant Mol Biol 2006;61:537-52. [DOI: 10.1007/s11103-006-0029-4] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 1.3] [Reference Citation Analysis]
19 Penin AA, Kasianov AS, Klepikova AV, Kirov IV, Gerasimov ES, Fesenko AN, Logacheva MD. High-Resolution Transcriptome Atlas and Improved Genome Assembly of Common Buckwheat, Fagopyrum esculentum. Front Plant Sci 2021;12:612382. [PMID: 33815435 DOI: 10.3389/fpls.2021.612382] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Jacoby RP, Koprivova A, Kopriva S. Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. J Exp Bot 2021;72:57-69. [PMID: 32995888 DOI: 10.1093/jxb/eraa424] [Cited by in Crossref: 22] [Cited by in F6Publishing: 13] [Article Influence: 22.0] [Reference Citation Analysis]
21 Wen Z, Rupasinghe S, Niu G, Berenbaum MR, Schuler MA. CYP6B1 and CYP6B3 of the Black Swallowtail (Papilio polyxenes): Adaptive Evolution through Subfunctionalization. Molecular Biology and Evolution 2006;23:2434-43. [DOI: 10.1093/molbev/msl118] [Cited by in Crossref: 61] [Cited by in F6Publishing: 54] [Article Influence: 3.8] [Reference Citation Analysis]
22 Kliebenstein D. Advancing genetic theory and application by metabolic quantitative trait loci analysis. Plant Cell 2009;21:1637-46. [PMID: 19525414 DOI: 10.1105/tpc.109.067611] [Cited by in Crossref: 50] [Cited by in F6Publishing: 49] [Article Influence: 3.8] [Reference Citation Analysis]
23 Falginella L, Castellarin SD, Testolin R, Gambetta GA, Morgante M, Di Gaspero G. Expansion and subfunctionalisation of flavonoid 3',5'-hydroxylases in the grapevine lineage. BMC Genomics 2010;11:562. [PMID: 20939908 DOI: 10.1186/1471-2164-11-562] [Cited by in Crossref: 71] [Cited by in F6Publishing: 59] [Article Influence: 5.9] [Reference Citation Analysis]
24 Ober D. Gene duplications and the time thereafter - examples from plant secondary metabolism. Plant Biol (Stuttg) 2010;12:570-7. [PMID: 20636899 DOI: 10.1111/j.1438-8677.2009.00317.x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 20] [Article Influence: 0.3] [Reference Citation Analysis]
25 Wink M. Evolution of Secondary Plant Metabolism. In: John Wiley & Sons Ltd, editor. eLS. Chichester: John Wiley & Sons, Ltd; 2001. pp. 1-11. [DOI: 10.1002/9780470015902.a0001922.pub3] [Cited by in Crossref: 11] [Cited by in F6Publishing: 2] [Article Influence: 1.8] [Reference Citation Analysis]
26 Shoji T, Hashimoto T. Polyamine-Derived Alkaloids in Plants: Molecular Elucidation of Biosynthesis. In: Kusano T, Suzuki H, editors. Polyamines. Tokyo: Springer Japan; 2015. pp. 189-200. [DOI: 10.1007/978-4-431-55212-3_16] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
27 Langel D, Ober D, Pelser PB. The evolution of pyrrolizidine alkaloid biosynthesis and diversity in the Senecioneae. Phytochem Rev 2011;10:3-74. [DOI: 10.1007/s11101-010-9184-y] [Cited by in Crossref: 48] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
28 Koduri PK, Gordon GS, Barker EI, Colpitts CC, Ashton NW, Suh DY. Genome-wide analysis of the chalcone synthase superfamily genes of Physcomitrella patens. Plant Mol Biol 2010;72:247-63. [PMID: 19876746 DOI: 10.1007/s11103-009-9565-z] [Cited by in Crossref: 56] [Cited by in F6Publishing: 44] [Article Influence: 4.3] [Reference Citation Analysis]
29 Speed MP, Fenton A, Jones MG, Ruxton GD, Brockhurst MA. Coevolution can explain defensive secondary metabolite diversity in plants. New Phytol 2015;208:1251-63. [DOI: 10.1111/nph.13560] [Cited by in Crossref: 44] [Cited by in F6Publishing: 33] [Article Influence: 6.3] [Reference Citation Analysis]
30 Noguchi A, Horikawa M, Fukui Y, Fukuchi-Mizutani M, Iuchi-Okada A, Ishiguro M, Kiso Y, Nakayama T, Ono E. Local differentiation of sugar donor specificity of flavonoid glycosyltransferase in Lamiales. Plant Cell 2009;21:1556-72. [PMID: 19454730 DOI: 10.1105/tpc.108.063826] [Cited by in Crossref: 74] [Cited by in F6Publishing: 70] [Article Influence: 5.7] [Reference Citation Analysis]
31 Labarrere B, Prinzing A, Dorey T, Chesneau E, Hennion F. Variations of Secondary Metabolites among Natural Populations of Sub-Antarctic Ranunculus Species Suggest Functional Redundancy and Versatility. Plants (Basel) 2019;8:E234. [PMID: 31331007 DOI: 10.3390/plants8070234] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
32 Ai J, Yu Q, Cheng T, Dai F, Zhang X, Zhu Y, Xiang Z. Characterization of multiple CYP9A genes in the silkworm, Bombyx mori. Mol Biol Rep 2010;37:1657-64. [PMID: 19533415 DOI: 10.1007/s11033-009-9580-9] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.2] [Reference Citation Analysis]
33 McAdam EL, Freeman JS, Whittock SP, Buck EJ, Jakse J, Cerenak A, Javornik B, Kilian A, Wang CH, Andersen D, Vaillancourt RE, Carling J, Beatson R, Graham L, Graham D, Darby P, Koutoulis A. Quantitative trait loci in hop (Humulus lupulus L.) reveal complex genetic architecture underlying variation in sex, yield and cone chemistry. BMC Genomics 2013;14:360. [PMID: 23718194 DOI: 10.1186/1471-2164-14-360] [Cited by in Crossref: 22] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
34 Han Y, Gasic K, Korban SS. Multiple-copy cluster-type organization and evolution of genes encoding O-methyltransferases in the apple. Genetics 2007;176:2625-35. [PMID: 17717198 DOI: 10.1534/genetics.107.073650] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 0.7] [Reference Citation Analysis]
35 Sweetlove LJ, Fell D, Fernie AR. Getting to grips with the plant metabolic network. Biochem J 2008;409:27-41. [PMID: 18062772 DOI: 10.1042/BJ20071115] [Cited by in Crossref: 62] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
36 Shimada N, Sato S, Akashi T, Nakamura Y, Tabata S, Ayabe S, Aoki T. Genome-wide analyses of the structural gene families involved in the legume-specific 5-deoxyisoflavonoid biosynthesis of Lotus japonicus. DNA Res 2007;14:25-36. [PMID: 17452423 DOI: 10.1093/dnares/dsm004] [Cited by in Crossref: 35] [Cited by in F6Publishing: 24] [Article Influence: 2.3] [Reference Citation Analysis]
37 Sun H, Liu F, Baker AP, Honegger HW, Raiser G, Zwiebel LJ. Neuronal odor coding in the larval sensory cone of Anopheles coluzzii: Complex responses from a simple system. Cell Rep 2021;36:109555. [PMID: 34407405 DOI: 10.1016/j.celrep.2021.109555] [Reference Citation Analysis]
38 Li H, Jiang S, Li C, Liu L, Lin Z, He H, Deng X, Zhang Z, Wang X. The hybrid protein interactome contributes to rice heterosis as epistatic effects. Plant J 2020;102:116-28. [DOI: 10.1111/tpj.14616] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
39 Huang Y, Wang X, Ge S, Rao GY. Divergence and adaptive evolution of the gibberellin oxidase genes in plants. BMC Evol Biol 2015;15:207. [PMID: 26416509 DOI: 10.1186/s12862-015-0490-2] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 3.6] [Reference Citation Analysis]
40 Chamala S, Feng G, Chavarro C, Barbazuk WB. Genome-wide identification of evolutionarily conserved alternative splicing events in flowering plants. Front Bioeng Biotechnol 2015;3:33. [PMID: 25859541 DOI: 10.3389/fbioe.2015.00033] [Cited by in Crossref: 57] [Cited by in F6Publishing: 57] [Article Influence: 8.1] [Reference Citation Analysis]
41 Ober D, Kaltenegger E. Pyrrolizidine alkaloid biosynthesis, evolution of a pathway in plant secondary metabolism. Phytochemistry 2009;70:1687-95. [PMID: 19545881 DOI: 10.1016/j.phytochem.2009.05.017] [Cited by in Crossref: 51] [Cited by in F6Publishing: 40] [Article Influence: 3.9] [Reference Citation Analysis]
42 Gustafson P, Jung JH, Hong MJ, Kim DY, Kim JY, Heo HY, Kim TH, Jang CS, Seo YW. Structural and expressional divergence of genes encoding O -methyltransferase in wheat. Genome 2008;51:856-69. [DOI: 10.1139/g08-069] [Cited by in Crossref: 9] [Cited by in F6Publishing: 1] [Article Influence: 0.6] [Reference Citation Analysis]
43 Macel M, Van Dam NM, Keurentjes JJ. Metabolomics: the chemistry between ecology and genetics. Mol Ecol Resour 2010;10:583-93. [PMID: 21565063 DOI: 10.1111/j.1755-0998.2010.02854.x] [Cited by in Crossref: 91] [Cited by in F6Publishing: 77] [Article Influence: 7.6] [Reference Citation Analysis]
44 Böttcher C, Centeno D, Freitag J, Höfgen R, Köhl K, Kopka J, Kroymann J, Matros A, Mock HP, Neumann S, Pfalz M, von Roepenack-Lahaye E, Schauer N, Trenkamp S, Zurbriggen M, Fernie AR. Teaching (and learning from) metabolomics: the 2006 PlantMetaNet ETNA Metabolomics Research School. Physiol Plant 2008;132:136-49. [PMID: 18251856 DOI: 10.1111/j.1399-3054.2007.00990.x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 0.1] [Reference Citation Analysis]
45 Vogt T. Phenylpropanoid Biosynthesis. Molecular Plant 2010;3:2-20. [DOI: 10.1093/mp/ssp106] [Cited by in Crossref: 1256] [Cited by in F6Publishing: 998] [Article Influence: 104.7] [Reference Citation Analysis]
46 Feng G, Xu L, Wang J, Nie G, Bushman BS, Xie W, Yan H, Yang Z, Guan H, Huang L, Zhang X. Integration of small RNAs and transcriptome sequencing uncovers a complex regulatory network during vernalization and heading stages of orchardgrass (Dactylis glomerata L.). BMC Genomics 2018;19:727. [PMID: 30285619 DOI: 10.1186/s12864-018-5104-0] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
47 Izumi M, Sunohara Y, Yamaguchi T, Fujii Y, Matsumoto H. Isophorone‐induced light‐independent lipid peroxidation and loss of cell membrane integrity. Weed Biol Manag 2021;21:11-8. [DOI: 10.1111/wbm.12221] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
48 Nandula VK, Riechers DE, Ferhatoglu Y, Barrett M, Duke SO, Dayan FE, Goldberg-cavalleri A, Tétard-jones C, Wortley DJ, Onkokesung N, Brazier-hicks M, Edwards R, Gaines T, Iwakami S, Jugulam M, Ma R. Herbicide Metabolism: Crop Selectivity, Bioactivation, Weed Resistance, and Regulation. Weed Sci 2019;67:149-75. [DOI: 10.1017/wsc.2018.88] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 7.3] [Reference Citation Analysis]
49 Kaltenegger E, Eich E, Ober D. Evolution of homospermidine synthase in the convolvulaceae: a story of gene duplication, gene loss, and periods of various selection pressures. Plant Cell 2013;25:1213-27. [PMID: 23572540 DOI: 10.1105/tpc.113.109744] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
50 Nomura T. Function and application of a non-ester-hydrolyzing carboxylesterase discovered in tulip. Bioscience, Biotechnology, and Biochemistry 2017;81:81-94. [DOI: 10.1080/09168451.2016.1240608] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.6] [Reference Citation Analysis]
51 Kliebenstein DJ. A role for gene duplication and natural variation of gene expression in the evolution of metabolism. PLoS One 2008;3:e1838. [PMID: 18350173 DOI: 10.1371/journal.pone.0001838] [Cited by in Crossref: 80] [Cited by in F6Publishing: 72] [Article Influence: 5.7] [Reference Citation Analysis]
52 Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EH, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJ, Walton EF, Yauk YK. Analyses of expressed sequence tags from apple. Plant Physiol 2006;141:147-66. [PMID: 16531485 DOI: 10.1104/pp.105.076208] [Cited by in Crossref: 200] [Cited by in F6Publishing: 174] [Article Influence: 12.5] [Reference Citation Analysis]
53 Davidson RM, Reeves PA, Manosalva PM, Leach JE. Germins: A diverse protein family important for crop improvement. Plant Science 2009;177:499-510. [DOI: 10.1016/j.plantsci.2009.08.012] [Cited by in Crossref: 87] [Cited by in F6Publishing: 34] [Article Influence: 6.7] [Reference Citation Analysis]
54 Abdelhady MI, Beuerle T, Ober D. Homospermidine in transgenic tobacco results in considerably reduced spermidine levels but is not converted to pyrrolizidine alkaloid precursors. Plant Mol Biol 2009;71:145-55. [PMID: 19543980 DOI: 10.1007/s11103-009-9514-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 0.8] [Reference Citation Analysis]
55 Shirai K, Matsuda F, Nakabayashi R, Okamoto M, Tanaka M, Fujimoto A, Shimizu M, Shinozaki K, Seki M, Saito K, Hanada K. A Highly Specific Genome-Wide Association Study Integrated with Transcriptome Data Reveals the Contribution of Copy Number Variations to Specialized Metabolites in Arabidopsis thaliana Accessions. Mol Biol Evol 2017;34:3111-22. [PMID: 28961930 DOI: 10.1093/molbev/msx234] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
56 Zhang Y, Deng T, Sun L, Landis JB, Moore MJ, Wang H, Wang Y, Hao X, Chen J, Li S, Xu M, Puno P, Raven PH, Sun H. Phylogenetic patterns suggest frequent multiple origins of secondary metabolites across the seed-plant ‘tree of life’. National Science Review 2021;8:nwaa105. [DOI: 10.1093/nsr/nwaa105] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
57 Chung HH, Schwinn KE, Ngo HM, Lewis DH, Massey B, Calcott KE, Crowhurst R, Joyce DC, Gould KS, Davies KM, Harrison DK. Characterisation of betalain biosynthesis in Parakeelya flowers identifies the key biosynthetic gene DOD as belonging to an expanded LigB gene family that is conserved in betalain-producing species. Front Plant Sci 2015;6:499. [PMID: 26217353 DOI: 10.3389/fpls.2015.00499] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
58 Akashi T, VanEtten HD, Sawada Y, Wasmann CC, Uchiyama H, Ayabe S. Catalytic specificity of pea O-methyltransferases suggests gene duplication for (+)-pisatin biosynthesis. Phytochemistry 2006;67:2525-30. [PMID: 17067644 DOI: 10.1016/j.phytochem.2006.09.010] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 0.8] [Reference Citation Analysis]
59 Kreis W, Munkert J. Exploiting enzyme promiscuity to shape plant specialized metabolism. Journal of Experimental Botany 2019;70:1435-45. [DOI: 10.1093/jxb/erz025] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
60 Wang S, Alseekh S, Fernie AR, Luo J. The Structure and Function of Major Plant Metabolite Modifications. Molecular Plant 2019;12:899-919. [DOI: 10.1016/j.molp.2019.06.001] [Cited by in Crossref: 72] [Cited by in F6Publishing: 47] [Article Influence: 24.0] [Reference Citation Analysis]
61 Schwab W. Role of metabolome diversity in fruit and vegetable quality: multifunctional enzymes and volatiles. Fruit and Vegetable Flavour. Elsevier; 2008. pp. 272-86. [DOI: 10.1533/9781845694296.4.272] [Cited by in Crossref: 3] [Article Influence: 0.2] [Reference Citation Analysis]
62 Sulmon C, van Baaren J, Cabello-hurtado F, Gouesbet G, Hennion F, Mony C, Renault D, Bormans M, El Amrani A, Wiegand C, Gérard C. Abiotic stressors and stress responses: What commonalities appear between species across biological organization levels? Environmental Pollution 2015;202:66-77. [DOI: 10.1016/j.envpol.2015.03.013] [Cited by in Crossref: 48] [Cited by in F6Publishing: 34] [Article Influence: 6.9] [Reference Citation Analysis]
63 El-Sappah AH, Elrys AS, Desoky EM, Zhao X, Bingwen W, El-Sappah HH, Zhu Y, Zhou W, Zhao X, Li J. Comprehensive genome wide identification and expression analysis of MTP gene family in tomato (Solanum lycopersicum) under multiple heavy metal stress. Saudi J Biol Sci 2021;28:6946-56. [PMID: 34866994 DOI: 10.1016/j.sjbs.2021.07.073] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Nadella KD, Marla SS, Kumar PA. Metabolomics in agriculture. OMICS 2012;16:149-59. [PMID: 22433073 DOI: 10.1089/omi.2011.0067] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
65 Priya P, Yadav A, Chand J, Yadav G. Terzyme: a tool for identification and analysis of the plant terpenome. Plant Methods 2018;14:4. [PMID: 29339971 DOI: 10.1186/s13007-017-0269-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
66 Dezfulian MH, Foreman C, Jalili E, Pal M, Dhaliwal RK, Roberto DK, Imre KM, Kohalmi SE, Crosby WL. Acetolactate synthase regulatory subunits play divergent and overlapping roles in branched-chain amino acid synthesis and Arabidopsis development. BMC Plant Biol 2017;17:71. [PMID: 28388946 DOI: 10.1186/s12870-017-1022-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
67 Misra RC, Sharma S, Sandeep, Garg A, Chanotiya CS, Ghosh S. Two CYP716A subfamily cytochrome P450 monooxygenases of sweet basil play similar but nonredundant roles in ursane‐ and oleanane‐type pentacyclic triterpene biosynthesis. New Phytol 2017;214:706-20. [DOI: 10.1111/nph.14412] [Cited by in Crossref: 28] [Cited by in F6Publishing: 23] [Article Influence: 5.6] [Reference Citation Analysis]
68 Hennion F, Bouchereau A, Gauthier C, Hermant M, Vernon P, Prinzing A. Variation in amine composition in plant species:How it integrates macroevolutionary and environmental signals. American Journal of Botany 2012;99:36-45. [DOI: 10.3732/ajb.1100211] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
69 Busquets A, Keim V, Closa M, del Arco A, Boronat A, Arró M, Ferrer A. Arabidopsis thaliana contains a single gene encoding squalene synthase. Plant Mol Biol 2008;67:25-36. [DOI: 10.1007/s11103-008-9299-3] [Cited by in Crossref: 49] [Cited by in F6Publishing: 45] [Article Influence: 3.5] [Reference Citation Analysis]
70 Kuo YT, Chao YT, Chen WC, Shih MC, Chang SB. Segmental and tandem chromosome duplications led to divergent evolution of the chalcone synthase gene family in Phalaenopsis orchids. Ann Bot 2019;123:69-77. [PMID: 30113635 DOI: 10.1093/aob/mcy136] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
71 Sievert C, Beuerle T, Hollmann J, Ober D. Single cell subtractive transcriptomics for identification of cell-specifically expressed candidate genes of pyrrolizidine alkaloid biosynthesis. Phytochemistry 2015;117:17-24. [PMID: 26057225 DOI: 10.1016/j.phytochem.2015.05.003] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]
72 Johnson DA, Thomas MA. The monosaccharide transporter gene family in Arabidopsis and rice: a history of duplications, adaptive evolution, and functional divergence. Mol Biol Evol 2007;24:2412-23. [PMID: 17827171 DOI: 10.1093/molbev/msm184] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 3.8] [Reference Citation Analysis]
73 Porth I, Hamberger B, White R, Ritland K. Defense mechanisms against herbivory in Picea: sequence evolution and expression regulation of gene family members in the phenylpropanoid pathway. BMC Genomics 2011;12:608. [PMID: 22177423 DOI: 10.1186/1471-2164-12-608] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 2.8] [Reference Citation Analysis]
74 Hartmann T, Ober D. Defense by Pyrrolizidine Alkaloids: Developed by Plants and Recruited by Insects. In: Schaller A, editor. Induced Plant Resistance to Herbivory. Dordrecht: Springer Netherlands; 2008. pp. 213-31. [DOI: 10.1007/978-1-4020-8182-8_10] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
75 Wang J, Chu S, Zhu Y, Cheng H, Yu D. Positive selection drives neofunctionalization of the UbiA prenyltransferase gene family. Plant Mol Biol 2015;87:383-94. [PMID: 25605655 DOI: 10.1007/s11103-015-0285-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]
76 Gebhardt YH, Witte S, Steuber H, Matern U, Martens S. Evolution of flavone synthase I from parsley flavanone 3beta-hydroxylase by site-directed mutagenesis. Plant Physiol 2007;144:1442-54. [PMID: 17535823 DOI: 10.1104/pp.107.098392] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 3.1] [Reference Citation Analysis]
77 Ruel DM, Yakir E, Bohbot JD. Supersensitive Odorant Receptor Underscores Pleiotropic Roles of Indoles in Mosquito Ecology. Front Cell Neurosci 2018;12:533. [PMID: 30733668 DOI: 10.3389/fncel.2018.00533] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
78 Kliebenstein DJ. Quantification of variation in expression networks. Methods Mol Biol 2009;553:227-45. [PMID: 19588108 DOI: 10.1007/978-1-60327-563-7_11] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 0.8] [Reference Citation Analysis]
79 Liu PL, Wan JN, Guo YP, Ge S, Rao GY. Adaptive evolution of the chrysanthemyl diphosphate synthase gene involved in irregular monoterpene metabolism. BMC Evol Biol 2012;12:214. [PMID: 23137178 DOI: 10.1186/1471-2148-12-214] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
80 Vannozzi A, Dry IB, Fasoli M, Zenoni S, Lucchin M. Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biol 2012;12:130. [PMID: 22863370 DOI: 10.1186/1471-2229-12-130] [Cited by in Crossref: 174] [Cited by in F6Publishing: 146] [Article Influence: 17.4] [Reference Citation Analysis]
81 El-Sappah AH, Elbaiomy RG, Elrys AS, Wang Y, Zhu Y, Huang Q, Yan K, Xianming Z, Abbas M, El-Tarabily KA, Li J. Genome-Wide Identification and Expression Analysis of Metal Tolerance Protein Gene Family in Medicago truncatula Under a Broad Range of Heavy Metal Stress. Front Genet 2021;12:713224. [PMID: 34603378 DOI: 10.3389/fgene.2021.713224] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
82 Yuan L, Grotewold E. Metabolic engineering to enhance the value of plants as green factories. Metab Eng 2015;27:83-91. [PMID: 25461830 DOI: 10.1016/j.ymben.2014.11.005] [Cited by in Crossref: 49] [Cited by in F6Publishing: 32] [Article Influence: 6.1] [Reference Citation Analysis]
83 Dayan FE, Duke SO. Natural compounds as next-generation herbicides. Plant Physiol 2014;166:1090-105. [PMID: 24784133 DOI: 10.1104/pp.114.239061] [Cited by in Crossref: 170] [Cited by in F6Publishing: 117] [Article Influence: 21.3] [Reference Citation Analysis]
84 Langel D, Ober D. Evolutionary recruitment of a flavin-dependent monooxygenase for stabilization of sequestered pyrrolizidine alkaloids in arctiids. Phytochemistry 2011;72:1576-84. [PMID: 21288541 DOI: 10.1016/j.phytochem.2010.12.014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
85 van Leur H, Raaijmakers CE, van Dam NM. A heritable glucosinolate polymorphism within natural populations of Barbarea vulgaris. Phytochemistry 2006;67:1214-23. [DOI: 10.1016/j.phytochem.2006.04.021] [Cited by in Crossref: 49] [Cited by in F6Publishing: 44] [Article Influence: 3.1] [Reference Citation Analysis]
86 Mochida K, Sakurai T, Seki H, Yoshida T, Takahagi K, Sawai S, Uchiyama H, Muranaka T, Saito K. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. Plant J 2017;89:181-94. [PMID: 27775193 DOI: 10.1111/tpj.13385] [Cited by in Crossref: 80] [Cited by in F6Publishing: 69] [Article Influence: 13.3] [Reference Citation Analysis]
87 Huang BH, Chen YW, Huang CL, Gao J, Liao PC. Imbalanced positive selection maintains the functional divergence of duplicated DIHYDROKAEMPFEROL 4-REDUCTASE genes. Sci Rep 2016;6:39031. [PMID: 27966614 DOI: 10.1038/srep39031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
88 Xue Z, Duan L, Liu D, Guo J, Ge S, Dicks J, Ómáille P, Osbourn A, Qi X. Divergent evolution of oxidosqualene cyclases in plants. New Phytologist 2012;193:1022-38. [DOI: 10.1111/j.1469-8137.2011.03997.x] [Cited by in Crossref: 80] [Cited by in F6Publishing: 70] [Article Influence: 7.3] [Reference Citation Analysis]
89 Akashi T, Koshimizu S, Aoki T, Ayabe S. Identification of cDNAs encoding pterocarpan reductase involved in isoflavan phytoalexin biosynthesis in Lotus japonicus by EST mining. FEBS Lett 2006;580:5666-70. [PMID: 16996502 DOI: 10.1016/j.febslet.2006.09.016] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 2.0] [Reference Citation Analysis]
90 Boehm MMA, Ojeda DI, Cronk QCB. Dissecting the 'bacon and eggs' phenotype: transcriptomics of post-anthesis colour change in Lotus. Ann Bot 2017;120:563-75. [PMID: 28981620 DOI: 10.1093/aob/mcx090] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
91 Yang Z, Yang L, Liu C, Qin X, Liu H, Chen J, Ji Y. Transcriptome analyses of Paris polyphylla var. chinensis, Ypsilandra thibetica, and Polygonatum kingianum characterize their steroidal saponin biosynthesis pathway. Fitoterapia 2019;135:52-63. [PMID: 30999023 DOI: 10.1016/j.fitote.2019.04.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
92 Colle M, Leisner CP, Wai CM, Ou S, Bird KA, Wang J, Wisecaver JH, Yocca AE, Alger EI, Tang H, Xiong Z, Callow P, Ben-Zvi G, Brodt A, Baruch K, Swale T, Shiue L, Song GQ, Childs KL, Schilmiller A, Vorsa N, Buell CR, VanBuren R, Jiang N, Edger PP. Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry. Gigascience 2019;8:giz012. [PMID: 30715294 DOI: 10.1093/gigascience/giz012] [Cited by in Crossref: 53] [Cited by in F6Publishing: 41] [Article Influence: 17.7] [Reference Citation Analysis]
93 Yan F, Li H, Zhao P. Genome-Wide Identification and Transcriptional Expression of the PAL Gene Family in Common Walnut (Juglans Regia L.). Genes (Basel) 2019;10:E46. [PMID: 30650597 DOI: 10.3390/genes10010046] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
94 Roy NS, Choi IY, Um T, Jeon MJ, Kim BY, Kim YD, Yu JK, Kim S, Kim NS. Gene Expression and Isoform Identification of PacBio Full-Length cDNA Sequences for Berberine Biosynthesis in Berberis koreana. Plants (Basel) 2021;10:1314. [PMID: 34203474 DOI: 10.3390/plants10071314] [Reference Citation Analysis]
95 Kuchernig JC, Burow M, Wittstock U. Evolution of specifier proteins in glucosinolate-containing plants. BMC Evol Biol 2012;12:127. [PMID: 22839361 DOI: 10.1186/1471-2148-12-127] [Cited by in Crossref: 48] [Cited by in F6Publishing: 46] [Article Influence: 4.8] [Reference Citation Analysis]
96 Lee SG, Nwumeh R, Jez JM. Structure and Mechanism of Isopropylmalate Dehydrogenase from Arabidopsis thaliana: INSIGHTS ON LEUCINE AND ALIPHATIC GLUCOSINOLATE BIOSYNTHESIS. J Biol Chem 2016;291:13421-30. [PMID: 27137927 DOI: 10.1074/jbc.M116.730358] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
97 Kibble NAJ, Sohani MM, Shirley N, Byrt C, Roessner U, Bacic A, Schmidt O, Schultz CJ. Phylogenetic analysis and functional characterisation of strictosidine synthase-like genes in Arabidopsis thaliana. Functional Plant Biol 2009;36:1098. [DOI: 10.1071/fp09104] [Cited by in Crossref: 7] [Article Influence: 0.5] [Reference Citation Analysis]
98 Randlkofer B, Obermaier E, Hilker M, Meiners T. Vegetation complexity—The influence of plant species diversity and plant structures on plant chemical complexity and arthropods. Basic and Applied Ecology 2010;11:383-95. [DOI: 10.1016/j.baae.2010.03.003] [Cited by in Crossref: 102] [Cited by in F6Publishing: 50] [Article Influence: 8.5] [Reference Citation Analysis]