BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao X, Jin Y, Yang L, Hou Z, Liu Y, Sun T, Pei J, Li J, Yao C, Wang X, Chen G. Promotion of SIRT1 protein degradation and lower SIRT1 gene expression via reactive oxygen species is involved in Sb-induced apoptosis in BEAS-2b cells. Toxicology Letters 2018;296:73-81. [DOI: 10.1016/j.toxlet.2018.07.047] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
Number Citing Articles
1 Yu S, Li Z, Zhang Q, Wang R, Zhao Z, Ding W, Wang F, Sun C, Tang J, Wang X, Zhang H, Huang R, Wu Q, Jiang J, Zhao X. GPX4 degradation via chaperone-mediated autophagy contributes to antimony-triggered neuronal ferroptosis. Ecotoxicol Environ Saf 2022;234:113413. [PMID: 35305351 DOI: 10.1016/j.ecoenv.2022.113413] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Lai Z, He M, Lin C, Ouyang W, Liu X. Interactions of antimony with biomolecules and its effects on human health. Ecotoxicol Environ Saf 2022;233:113317. [PMID: 35182796 DOI: 10.1016/j.ecoenv.2022.113317] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
3 Li X, Kang B, Eom Y, Zhong J, Lee HK, Kim HM, Song JS. Comparison of cytotoxicity effects induced by four different types of nanoparticles in human corneal and conjunctival epithelial cells. Sci Rep 2022;12:155. [PMID: 34997120 DOI: 10.1038/s41598-021-04199-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
4 Zheng Y, Ding W, Zhang T, Zhao Z, Wang R, Li Z, Yu S, Li J, Zhao X, Wu Q. Antimony-induced astrocyte activation via mitogen-activated protein kinase activation-dependent CREB phosphorylation. Toxicol Lett 2021;352:9-16. [PMID: 34571074 DOI: 10.1016/j.toxlet.2021.09.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Tinkov AA, Nguyen TT, Santamaria A, Bowman AB, Buha Djordjevic A, Paoliello MMB, Skalny AV, Aschner M. Sirtuins as molecular targets, mediators, and protective agents in metal-induced toxicity. Arch Toxicol 2021;95:2263-78. [PMID: 34028595 DOI: 10.1007/s00204-021-03048-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
6 Smith LM, Yoza BK, Hoth JJ, McCall CE, Vachharajani V. SIRT1 Mediates Septic Cardiomyopathy in a Murine Model of Polymicrobial Sepsis. Shock 2020;54:96-101. [PMID: 31393272 DOI: 10.1097/SHK.0000000000001429] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 13.0] [Reference Citation Analysis]
7 Xiang QY, Tian F, Du X, Xu J, Zhu LY, Guo LL, Wen T, Liu YS, Liu L. Postprandial triglyceride-rich lipoproteins-induced premature senescence of adipose-derived mesenchymal stem cells via the SIRT1/p53/Ac-p53/p21 axis through oxidative mechanism. Aging (Albany NY) 2020;12:26080-94. [PMID: 33316776 DOI: 10.18632/aging.202298] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
8 Zhi Y, Lu C, Zhu G, Li Z, Zhu P, Liu Y, Shi W, Su L, Jiang J, Qu J, Zhao X. Positive regulation of the CREB phosphorylation via JNK-dependent pathway prevents antimony-induced neuronal apoptosis in PC12 cell and mice brain. NeuroToxicology 2020;81:101-8. [DOI: 10.1016/j.neuro.2020.09.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
9 Boreiko CJ, Rossman TG. Antimony and its compounds: Health impacts related to pulmonary toxicity, cancer, and genotoxicity. Toxicol Appl Pharmacol 2020;403:115156. [PMID: 32710957 DOI: 10.1016/j.taap.2020.115156] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 13.5] [Reference Citation Analysis]
10 Shi W, Tang Y, Zhi Y, Li Z, Yu S, Jiang J, Zhu J, Li J, Wang F, Su L, Zhao X. Akt inhibition-dependent downregulation of the Wnt/β-Catenin Signaling pathway contributes to antimony-induced neurotoxicity. Sci Total Environ 2020;737:140252. [PMID: 32783850 DOI: 10.1016/j.scitotenv.2020.140252] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
11 Huang HW, Bow YD, Wang CY, Chen YC, Fu PR, Chang KF, Wang TW, Tseng CH, Chen YL, Chiu CC. DFIQ, a Novel Quinoline Derivative, Shows Anticancer Potential by Inducing Apoptosis and Autophagy in NSCLC Cell and In Vivo Zebrafish Xenograft Models. Cancers (Basel) 2020;12:E1348. [PMID: 32466291 DOI: 10.3390/cancers12051348] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
12 Brenig K, Grube L, Schwarzländer M, Köhrer K, Stühler K, Poschmann G. The Proteomic Landscape of Cysteine Oxidation That Underpins Retinoic Acid-Induced Neuronal Differentiation. J Proteome Res 2020;19:1923-40. [DOI: 10.1021/acs.jproteome.9b00752] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
13 Luo H, Song S, Chen Y, Xu M, Sun L, Meng G, Zhang W. Inhibitor 1 of Protein Phosphatase 1 Regulates Ca2+/Calmodulin-Dependent Protein Kinase II to Alleviate Oxidative Stress in Hypoxia-Reoxygenation Injury of Cardiomyocytes. Oxid Med Cell Longev 2019;2019:2193019. [PMID: 31885777 DOI: 10.1155/2019/2193019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
14 Jiao M, Yin K, Zhang T, Wu C, Zhang Y, Zhao X, Wu Q. Effect of the SSeCKS–TRAF6 interaction on gastrodin-mediated protection against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced astrocyte activation and neuronal death. Chemosphere 2019;226:678-86. [DOI: 10.1016/j.chemosphere.2019.04.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
15 Zhao X, Wu Y, Li J, Li D, Jin Y, Zhu P, Liu Y, Zhuang Y, Yu S, Cao W, Wei H, Wang X, Han Y, Chen G. JNK activation-mediated nuclear SIRT1 protein suppression contributes to silica nanoparticle-induced pulmonary damage via p53 acetylation and cytoplasmic localisation. Toxicology 2019;423:42-53. [DOI: 10.1016/j.tox.2019.05.003] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
16 Zhu G, Liu Y, Zhi Y, Jin Y, Li J, Shi W, Liu Y, Han Y, Yu S, Jiang J, Zhao X. PKA- and Ca2+-dependent p38 MAPK/CREB activation protects against manganese-mediated neuronal apoptosis. Toxicol Lett 2019;309:10-9. [PMID: 30951808 DOI: 10.1016/j.toxlet.2019.04.004] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 7.0] [Reference Citation Analysis]