BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bowen JM, Tsykin A, Stringer AM, Logan RM, Gibson RJ, Keefe DM. Kinetics and regional specificity of irinotecan-induced gene expression in the gastrointestinal tract. Toxicology. 2010;269:1-12. [PMID: 20097248 DOI: 10.1016/j.tox.2009.12.020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 0.8] [Reference Citation Analysis]
Number Citing Articles
1 Fakiha K, Coller JK, Logan RM, Gibson RJ, Bowen JM. Amitriptyline prevents CPT-11-induced early-onset diarrhea and colonic apoptosis without reducing overall gastrointestinal damage in a rat model of mucositis. Support Care Cancer 2019;27:2313-20. [DOI: 10.1007/s00520-018-4511-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
2 Bowen JM, Gibson RJ, Keefe DM. Animal Models of Mucositis: Implications for Therapy. The Journal of Supportive Oncology 2011;9:161-8. [DOI: 10.1016/j.suponc.2011.04.009] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 4.1] [Reference Citation Analysis]
3 Ribeiro RA, Wanderley CW, Wong DV, Mota JM, Leite CA, Souza MH, Cunha FQ, Lima-Júnior RC. Irinotecan- and 5-fluorouracil-induced intestinal mucositis: insights into pathogenesis and therapeutic perspectives. Cancer Chemother Pharmacol 2016;78:881-93. [PMID: 27590709 DOI: 10.1007/s00280-016-3139-y] [Cited by in Crossref: 54] [Cited by in F6Publishing: 58] [Article Influence: 9.0] [Reference Citation Analysis]
4 Al-Dasooqi N. Matrix metalloproteinases and gut toxicity following cytotoxic cancer therapy. Curr Opin Support Palliat Care 2014;8:164-9. [PMID: 24752198 DOI: 10.1097/SPC.0000000000000049] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
5 Al-Dasooqi N, Gibson RJ, Bowen JM, Logan RM, Stringer AM, Keefe DM. Matrix metalloproteinases are possible mediators for the development of alimentary tract mucositis in the dark agouti rat. Exp Biol Med (Maywood). 2010;235:1244-1256. [PMID: 20682600 DOI: 10.1258/ebm.2010.010082] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 3.8] [Reference Citation Analysis]
6 Mayo BJ, Stringer AM, Bowen JM, Bateman EH, Keefe DM. Irinotecan-induced mucositis: the interactions and potential role of GLP-2 analogues. Cancer Chemother Pharmacol 2017;79:233-49. [PMID: 27770239 DOI: 10.1007/s00280-016-3165-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
7 Boeing T, Speca S, de Souza P, Mena AM, Bertin B, Desreumax P, Mota da Silva L, Faloni de Andrade S, Dubuqoy L. The PPARγ-dependent effect of flavonoid luteolin against damage induced by the chemotherapeutic irinotecan in human intestinal cells. Chem Biol Interact 2021;351:109712. [PMID: 34699766 DOI: 10.1016/j.cbi.2021.109712] [Reference Citation Analysis]
8 Vanhoecke B, Bateman E, Mayo B, Vanlancker E, Stringer A, Thorpe D, Keefe D. Dark Agouti rat model of chemotherapy-induced mucositis: establishment and current state of the art. Exp Biol Med (Maywood) 2015;240:725-41. [PMID: 25966981 DOI: 10.1177/1535370215581309] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
9 Zhang M, Chen JX, Tan JY, Liu XL. Progress towards the development of animal models of chemotherapy-induced gastrointestinal mucositis. Shijie Huaren Xiaohua Zazhi 2012; 20(8): 649-655 [DOI: 10.11569/wcjd.v20.i8.649] [Reference Citation Analysis]