BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Snyder C, Yu L, Ngo T, Sheinson D, Zhu Y, Tseng M, Misner D, Staflin K. In vitro assessment of chemotherapy-induced neuronal toxicity. Toxicol In Vitro. 2018;50:109-123. [PMID: 29427706 DOI: 10.1016/j.tiv.2018.02.004] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
Number Citing Articles
1 Wang M, Wang J, Tsui AYP, Li Z, Zhang Y, Zhao Q, Xing H, Wang X. Mechanisms of peripheral neurotoxicity associated with four chemotherapy drugs using human induced pluripotent stem cell-derived peripheral neurons. Toxicol In Vitro 2021;77:105233. [PMID: 34390763 DOI: 10.1016/j.tiv.2021.105233] [Reference Citation Analysis]
2 Eldridge S, Guo L, Hamre J 3rd. A Comparative Review of Chemotherapy-Induced Peripheral Neuropathy in In Vivo and In Vitro Models. Toxicol Pathol 2020;48:190-201. [PMID: 31331249 DOI: 10.1177/0192623319861937] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
3 Johnstone AFM, Mack CM, Valdez MC, Shafer TJ, LoPachin RM, Herr DW, Kodavanti PRS. Acute in vitro effects on embryonic rat dorsal root ganglion (DRG) cultures by in silico predicted neurotoxic chemicals: Evaluations on cytotoxicity, neurite length, and neurophysiology. Toxicol In Vitro 2020;69:104989. [PMID: 32882341 DOI: 10.1016/j.tiv.2020.104989] [Reference Citation Analysis]
4 Genova E, Cavion F, Lucafò M, Leo LD, Pelin M, Stocco G, Decorti G. Induced pluripotent stem cells for therapy personalization in pediatric patients: Focus on drug-induced adverse events. World J Stem Cells 2019; 11(12): 1020-1044 [PMID: 31875867 DOI: 10.4252/wjsc.v11.i12.1020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
5 Zhang H, Mao J, Qi HZ, Xie HZ, Shen C, Liu CT, Ding L. Developing novel computational prediction models for assessing chemical-induced neurotoxicity using naïve Bayes classifier technique. Food Chem Toxicol 2020;143:111513. [PMID: 32621845 DOI: 10.1016/j.fct.2020.111513] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
6 Xiong C, Chua KC, Stage TB, Priotti J, Kim J, Altman-Merino A, Chan D, Saraf K, Canato Ferracini A, Fattahi F, Kroetz DL. Human Induced Pluripotent Stem Cell Derived Sensory Neurons are Sensitive to the Neurotoxic Effects of Paclitaxel. Clin Transl Sci 2021;14:568-81. [PMID: 33340242 DOI: 10.1111/cts.12912] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
7 Chua KC, El-Haj N, Priotti J, Kroetz DL. Mechanistic insights into the pathogenesis of microtubule-targeting agent-induced peripheral neuropathy from pharmacogenetic and functional studies. Basic Clin Pharmacol Toxicol 2021. [PMID: 34481421 DOI: 10.1111/bcpt.13654] [Reference Citation Analysis]
8 Calls A, Carozzi V, Navarro X, Monza L, Bruna J. Pathogenesis of platinum-induced peripheral neurotoxicity: Insights from preclinical studies. Exp Neurol 2020;325:113141. [PMID: 31865195 DOI: 10.1016/j.expneurol.2019.113141] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
9 Eldridge S, Scuteri A, Jones EMC, Cavaletti G, Guo L, Glaze E. Considerations for a Reliable In Vitro Model of Chemotherapy-Induced Peripheral Neuropathy. Toxics 2021;9:300. [PMID: 34822690 DOI: 10.3390/toxics9110300] [Reference Citation Analysis]
10 Genualdi C, Feinstein S, Wilson L, Jordan M, Stagg N. Assessing the utility of in vitro microtubule assays for studying mechanisms of peripheral neuropathy with the microtubule inhibitor class of cancer chemotherapy. Chemico-Biological Interactions 2020;315:108906. [DOI: 10.1016/j.cbi.2019.108906] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]