BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Kämpfer AAM, Urbán P, Gioria S, Kanase N, Stone V, Kinsner-Ovaskainen A. Development of an in vitro co-culture model to mimic the human intestine in healthy and diseased state. Toxicol In Vitro 2017;45:31-43. [PMID: 28807632 DOI: 10.1016/j.tiv.2017.08.011] [Cited by in Crossref: 72] [Cited by in F6Publishing: 81] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Busch M, Brouwer H, Aalderink G, Bredeck G, Kämpfer AAM, Schins RPF, Bouwmeester H. Investigating nanoplastics toxicity using advanced stem cell-based intestinal and lung in vitro models. Front Toxicol 2023;5. [DOI: 10.3389/ftox.2023.1112212] [Reference Citation Analysis]
2 Elzinga J, Grouls M, Hooiveld GJEJ, van der Zande M, Smidt H, Bouwmeester H. Systematic comparison of transcriptomes of Caco-2 cells cultured under different cellular and physiological conditions. Arch Toxicol 2023;:1-17. [PMID: 36680592 DOI: 10.1007/s00204-022-03430-y] [Reference Citation Analysis]
3 Wendner D, Schott T, Mayer E, Teichmann K. Beneficial Effects of Phytogenic Feed Additives on Epithelial Barrier Integrity in an In Vitro Co-Culture Model of the Piglet Gut. Molecules 2023;28:1026. [DOI: 10.3390/molecules28031026] [Reference Citation Analysis]
4 Bredeck G, Busch M, Rossi A, Stahlmecke B, Fomba KW, Herrmann H, Schins RPF. Inhalable Saharan dust induces oxidative stress, NLRP3 inflammasome activation, and inflammatory cytokine release. Environ Int 2023;172:107732. [PMID: 36680803 DOI: 10.1016/j.envint.2023.107732] [Reference Citation Analysis]
5 Fang X, Nong K, Wang Z, Jin Y, Gao F, Zeng Q, Wang X, Zhang H. Human cathelicidin LL-37 exerts amelioration effects against EHEC O157:H7 infection regarding inflammation, enteric dysbacteriosis, and impairment of gut barrier function. Peptides 2023;159:170903. [PMID: 36370932 DOI: 10.1016/j.peptides.2022.170903] [Reference Citation Analysis]
6 Schimpel C, Passegger C, Egger S, Tam-Amersdorfer C, Strobl H. A novel 3D cell culture model to study the human small intestinal immune landscape. Eur J Immunol 2022;:e2250131. [PMID: 36527196 DOI: 10.1002/eji.202250131] [Reference Citation Analysis]
7 Stevens Y, de Bie T, Pinheiro I, Elizalde M, Masclee A, Jonkers D. The effects of citrus flavonoids and their metabolites on immune-mediated intestinal barrier disruption using an in vitro co-culture model. Br J Nutr 2022;128:1917-26. [PMID: 35086580 DOI: 10.1017/S0007114521004797] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Lima MSR, Gonçalves C, Neto MD, Macedo MH, Queiroz JLCD, da Silva VC, Costa IDS, Camillo CDS, Santos PPDA, Lima AAM, Pastrana L, Maciel BLL, Morais AHA. Anti-Inflammatory Protein Isolated from Tamarind Promotes Better Histological Aspects in the Intestine Regardless of the Improvement of Intestinal Permeability in a Preclinical Study of Diet-Induced Obesity. Nutrients 2022;14:4669. [DOI: 10.3390/nu14214669] [Reference Citation Analysis]
9 Schnur S, Wahl V, Metz JK, Gillmann J, Hans F, Rotermund K, Zäh R, Brück DA, Schneider M, Hittinger M. Inflammatory bowel disease addressed by Caco-2 and monocyte-derived macrophages: an opportunity for an in vitro drug screening assay. In vitro models 2022. [DOI: 10.1007/s44164-022-00035-8] [Reference Citation Analysis]
10 Borgonetti V, Cocetta V, Biagi M, Carnevali I, Governa P, Montopoli M. Anti-inflammatory activity of a fixed combination of probiotics and herbal extract in an in-vitro model of intestinal inflammation by stimulating Caco-2 cells with LPS-conditioned THP-1 cells medium. Minerva Pediatr 2022;74. [DOI: 10.23736/s2724-5276.20.05765-5] [Reference Citation Analysis]
11 Foey A, Habil N, Strachan A, Beal J. Lacticaseibacillus casei Strain Shirota Modulates Macrophage-Intestinal Epithelial Cell Co-Culture Barrier Integrity, Bacterial Sensing and Inflammatory Cytokines. Microorganisms 2022;10:2087. [PMID: 36296363 DOI: 10.3390/microorganisms10102087] [Reference Citation Analysis]
12 Mcnamara E, Bomkamp C. Cultivated meat as a tool for fighting antimicrobial resistance. Nat Food 2022;3:791-794. [DOI: 10.1038/s43016-022-00602-y] [Reference Citation Analysis]
13 Busch M, Bredeck G, Waag F, Rahimi K, Ramachandran H, Bessel T, Barcikowski S, Herrmann A, Rossi A, Schins RPF. Assessing the NLRP3 Inflammasome Activating Potential of a Large Panel of Micro- and Nanoplastics in THP-1 Cells. Biomolecules 2022;12:1095. [DOI: 10.3390/biom12081095] [Reference Citation Analysis]
14 Moysidou CM, Withers AM, Nisbet AJ, Price DRG, Bryant CE, Cantacessi C, Owens RM. Investigation of Host-Microbe-Parasite Interactions in an In Vitro 3D Model of the Vertebrate Gut. Adv Biol (Weinh) 2022;6:e2200015. [PMID: 35652159 DOI: 10.1002/adbi.202200015] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Busch M, Ramachandran H, Wahle T, Rossi A, Schins RPF. Investigating the Role of the NLRP3 Inflammasome Pathway in Acute Intestinal Inflammation: Use of THP-1 Knockout Cell Lines in an Advanced Triple Culture Model. Front Immunol 2022;13:898039. [DOI: 10.3389/fimmu.2022.898039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Kämpfer AAM, Shah U, Chu SL, Busch M, Büttner V, He R, Rothen-rutishauser B, Schins RPF, Jenkins GJ. Interlaboratory comparison of an intestinal triple culture to confirm transferability and reproducibility. In vitro models 2022. [DOI: 10.1007/s44164-022-00025-w] [Reference Citation Analysis]
17 Rodríguez-Viso P, Domene A, Vélez D, Devesa V, Monedero V, Zúñiga M. Mercury toxic effects on the intestinal mucosa assayed on a bicameral in vitro model: Possible role of inflammatory response and oxidative stress. Food Chem Toxicol 2022;166:113224. [PMID: 35700822 DOI: 10.1016/j.fct.2022.113224] [Reference Citation Analysis]
18 Siddiqui SH, Subramaniyan SA, Park J, Kang D, Khan M, Belal SA, Lee SC, Shim K. Modulatory effects of cell–cell interactions between porcine skeletal muscle satellite cells and fibroblasts on the expression of myogenesis-related genes. Journal of Applied Animal Research 2022;50:259-68. [DOI: 10.1080/09712119.2022.2060986] [Reference Citation Analysis]
19 Hartwig O, Loretz B, Nougarede A, Jary D, Sulpice E, Gidrol X, Navarro F, Lehr CM. Leaky gut model of the human intestinal mucosa for testing siRNA-based nanomedicine targeting JAK1. J Control Release 2022:S0168-3659(22)00163-8. [PMID: 35339579 DOI: 10.1016/j.jconrel.2022.03.037] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
20 Mecocci S, Ottaviani A, Razzuoli E, Fiorani P, Pietrucci D, De Ciucis CG, Dei Giudici S, Franzoni G, Chillemi G, Cappelli K. Cow Milk Extracellular Vesicle Effects on an In Vitro Model of Intestinal Inflammation. Biomedicines 2022;10:570. [DOI: 10.3390/biomedicines10030570] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 van der Lugt B, Vos MC, Grootte Bromhaar M, Ijssennagger N, Vrieling F, Meijerink J, Steegenga WT. The effects of sulfated secondary bile acids on intestinal barrier function and immune response in an inflammatory in vitro human intestinal model. Heliyon 2022;8:e08883. [DOI: 10.1016/j.heliyon.2022.e08883] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Zongo AW, Zogona D, Youssef M, Ye S, Zhan F, Li J, Li B. Senegalia macrostachya seed polysaccharides attenuate inflammation-induced intestinal epithelial barrier dysfunction in a Caco-2 and RAW264.7 macrophage co-culture model by inhibiting the NF-κB/MLCK pathway. Food Funct 2022. [DOI: 10.1039/d2fo02377f] [Reference Citation Analysis]
23 Rahman S, Ghiboub M, Donkers JM, van de Steeg E, van Tol EAF, Hakvoort TBM, de Jonge WJ. The Progress of Intestinal Epithelial Models from Cell Lines to Gut-On-Chip. Int J Mol Sci 2021;22:13472. [PMID: 34948271 DOI: 10.3390/ijms222413472] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
24 Ghiselli F, Rossi B, Piva A, Grilli E. Assessing Intestinal Health. In Vitro and Ex vivo Gut Barrier Models of Farm Animals: Benefits and Limitations. Front Vet Sci 2021;8:723387. [PMID: 34888373 DOI: 10.3389/fvets.2021.723387] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
25 Cui JY, Lisi GP. Molecular Level Insights Into the Structural and Dynamic Factors Driving Cytokine Function. Front Mol Biosci 2021;8:773252. [PMID: 34760929 DOI: 10.3389/fmolb.2021.773252] [Reference Citation Analysis]
26 Bocheńska K, Moskot M, Gabig-Cimińska M. Use of Cytokine Mix-, Imiquimod-, and Serum-Induced Monoculture and Lipopolysaccharide- and Interferon Gamma-Treated Co-Culture to Establish In Vitro Psoriasis-like Inflammation Models. Cells 2021;10:2985. [PMID: 34831208 DOI: 10.3390/cells10112985] [Reference Citation Analysis]
27 Beterams A, De Paepe K, Maes L, Wise IJ, De Keersmaecker H, Rajkovic A, Laukens D, Van de Wiele T, Calatayud Arroyo M. Versatile human in vitro triple coculture model coincubated with adhered gut microbes reproducibly mimics pro-inflammatory host-microbe interactions in the colon. FASEB J 2021;35:e21992. [PMID: 34719821 DOI: 10.1096/fj.202101135R] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
28 Zhou X, Ren M, Yang J, Pan H, Yu M, Ji F. Curcumin Improves Epithelial Barrier Integrity of Caco-2 Monolayers by Inhibiting Endoplasmic Reticulum Stress and Subsequent Apoptosis. Gastroenterol Res Pract 2021;2021:5570796. [PMID: 34659400 DOI: 10.1155/2021/5570796] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
29 Endo S, Nishiyama T, Matuoka T, Miura T, Nishinaka T, Matsunaga T, Ikari A. Loxoprofen enhances intestinal barrier function via generation of its active metabolite by carbonyl reductase 1 in differentiated Caco-2 cells. Chem Biol Interact 2021;348:109634. [PMID: 34506768 DOI: 10.1016/j.cbi.2021.109634] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
30 Kah M, Johnston LJ, Kookana RS, Bruce W, Haase A, Ritz V, Dinglasan J, Doak S, Garelick H, Gubala V. Comprehensive framework for human health risk assessment of nanopesticides. Nat Nanotechnol 2021;16:955-64. [PMID: 34518657 DOI: 10.1038/s41565-021-00964-7] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 10.5] [Reference Citation Analysis]
31 Jiang M, Zhong G, Zhu Y, Wang L, He Y, Sun Q, Wu X, You X, Gao S, Tang D, Wang D. Retardant effect of dihydroartemisinin on ulcerative colitis in a JAK2/STAT3-dependent manner. Acta Biochim Biophys Sin (Shanghai) 2021;53:1113-23. [PMID: 34259316 DOI: 10.1093/abbs/gmab097] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
32 Signore MA, De Pascali C, Giampetruzzi L, Siciliano PA, Francioso L. Gut-on-Chip microphysiological systems: Latest advances in the integration of sensing strategies and adoption of mature detection mechanisms. Sensing and Bio-Sensing Research 2021;33:100443. [DOI: 10.1016/j.sbsr.2021.100443] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
33 Hartwig O, Shetab Boushehri MA, Shalaby KS, Loretz B, Lamprecht A, Lehr CM. Drug delivery to the inflamed intestinal mucosa - targeting technologies and human cell culture models for better therapies of IBD. Adv Drug Deliv Rev 2021;175:113828. [PMID: 34157320 DOI: 10.1016/j.addr.2021.113828] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
34 Xu Y, Shrestha N, Préat V, Beloqui A. An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Adv Drug Deliv Rev 2021;175:113795. [PMID: 33989702 DOI: 10.1016/j.addr.2021.05.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 6.5] [Reference Citation Analysis]
35 Le-Kim TH, Koo BI, Jo SD, Liang NW, Yang MY, Cho I, Chang JB, Wang TW, Nam YS. Artificial Taste Buds: Bioorthogonally Ligated Gustatory-Neuronal Multicellular Hybrids Enabling Intercellular Taste Signal Transmission. ACS Biomater Sci Eng 2021;7:3783-92. [PMID: 34324295 DOI: 10.1021/acsbiomaterials.1c00247] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
36 Busch M, Kämpfer AAM, Schins RPF. An inverted in vitro triple culture model of the healthy and inflamed intestine: Adverse effects of polyethylene particles. Chemosphere 2021;284:131345. [PMID: 34216924 DOI: 10.1016/j.chemosphere.2021.131345] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
37 Schott T, Reisinger N, Teichmann K, König J, Ladinig A, Mayer E. Establishment of an In Vitro Co-Culture Model of the Piglet Gut to Study Inflammatory Response and Barrier Integrity. Planta Med 2021. [PMID: 34144625 DOI: 10.1055/a-1510-5802] [Reference Citation Analysis]
38 Kondrashina A, Brodkorb A, Giblin L. Sodium butyrate converts Caco-2 monolayers into a leaky but healthy intestinal barrier resembling that of a newborn infant. Food Funct 2021;12:5066-76. [PMID: 33960994 DOI: 10.1039/d1fo00519g] [Reference Citation Analysis]
39 Silva NV, Carregosa D, Gonçalves C, Vieira OV, Nunes Dos Santos C, Jacinto A, Crespo CL. A Dietary Cholesterol-Based Intestinal Inflammation Assay for Improving Drug-Discovery on Inflammatory Bowel Diseases. Front Cell Dev Biol 2021;9:674749. [PMID: 34150769 DOI: 10.3389/fcell.2021.674749] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
40 Wang L, Wu J, Chen J, Dou W, Zhao Q, Han J, Liu J, Su W, Li A, Liu P, An Z, Xu C, Sun Y. Advances in reconstructing intestinal functionalities in vitro: From two/three dimensional-cell culture platforms to human intestine-on-a-chip. Talanta 2021;226:122097. [PMID: 33676654 DOI: 10.1016/j.talanta.2021.122097] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
41 Marescotti D, Lo Sasso G, Guerrera D, Renggli K, Ruiz Castro PA, Piault R, Jaquet V, Moine F, Luettich K, Frentzel S, Peitsch MC, Hoeng J. Development of an Advanced Multicellular Intestinal Model for Assessing Immunomodulatory Properties of Anti-Inflammatory Compounds. Front Pharmacol 2021;12:639716. [PMID: 33935729 DOI: 10.3389/fphar.2021.639716] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
42 Li W, Hao X, Liu Y, Tong T, Xu H, Jia L. Effects of anesthetic agents on inflammation in Caco-2, HK-2 and HepG2 cells. Exp Ther Med 2021;21:487. [PMID: 33790996 DOI: 10.3892/etm.2021.9918] [Reference Citation Analysis]
43 Ma LJ, Niu R, Wu X, Wu J, Zhou E, Xiao XP, Chen J. Quantitative evaluation of cellular internalization of polymeric nanoparticles within laryngeal cancer cells and immune cells for enhanced drug delivery. Nanoscale Res Lett 2021;16:40. [PMID: 33651256 DOI: 10.1186/s11671-021-03498-y] [Reference Citation Analysis]
44 Kulthong K, Hooiveld GJEJ, Duivenvoorde L, Miro Estruch I, Marin V, van der Zande M, Bouwmeester H. Transcriptome comparisons of in vitro intestinal epithelia grown under static and microfluidic gut-on-chip conditions with in vivo human epithelia. Sci Rep 2021;11:3234. [PMID: 33547413 DOI: 10.1038/s41598-021-82853-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
45 Kim YN, Ji YK, Kim NH, Van Tu N, Rho JR, Jeong EJ. Isoquinolinequinone Derivatives from a Marine Sponge (Haliclona sp.) Regulate Inflammation in In Vitro System of Intestine. Mar Drugs 2021;19:90. [PMID: 33557170 DOI: 10.3390/md19020090] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
46 Kämpfer AAM, Busch M, Büttner V, Bredeck G, Stahlmecke B, Hellack B, Masson I, Sofranko A, Albrecht C, Schins RPF. Model Complexity as Determining Factor for In Vitro Nanosafety Studies: Effects of Silver and Titanium Dioxide Nanomaterials in Intestinal Models. Small 2021;17:2004223. [DOI: 10.1002/smll.202004223] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 5.5] [Reference Citation Analysis]
47 Kordulewska NK, Topa J, Tańska M, Cieślińska A, Fiedorowicz E, Savelkoul HFJ, Jarmołowska B. Modulatory Effects of Osthole on Lipopolysaccharides-Induced Inflammation in Caco-2 Cell Monolayer and Co-Cultures with THP-1 and THP-1-Derived Macrophages. Nutrients 2020;13:E123. [PMID: 33396265 DOI: 10.3390/nu13010123] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
48 Weindl G. Immunocompetent Human Intestinal Models in Preclinical Drug Development. Handb Exp Pharmacol 2021;265:219-33. [PMID: 33349897 DOI: 10.1007/164_2020_429] [Reference Citation Analysis]
49 Oscarsson E, Lindberg T, Zeller KS, Lindstedt M, Agardh D, Håkansson Å, Östbring K. Changes in Intestinal Permeability Ex Vivo and Immune Cell Activation by Three Commonly Used Emulsifiers. Molecules 2020;25:E5943. [PMID: 33333981 DOI: 10.3390/molecules25245943] [Reference Citation Analysis]
50 Bongaerts E, Nawrot TS, Van Pee T, Ameloot M, Bové H. Translocation of (ultra)fine particles and nanoparticles across the placenta; a systematic review on the evidence of in vitro, ex vivo, and in vivo studies. Part Fibre Toxicol 2020;17:56. [PMID: 33138843 DOI: 10.1186/s12989-020-00386-8] [Cited by in Crossref: 31] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
51 Luzardo-Ocampo I, Loarca-Piña G, Gonzalez de Mejia E. Gallic and butyric acids modulated NLRP3 inflammasome markers in a co-culture model of intestinal inflammation. Food Chem Toxicol 2020;146:111835. [PMID: 33130239 DOI: 10.1016/j.fct.2020.111835] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
52 Bonvicini F, Pagnotta E, Punzo A, Calabria D, Simoni P, Mirasoli M, Passerini N, Bertoni S, Ugolini L, Lazzeri L, Gentilomi GA, Caliceti C, Roda A. Effect of Lactobacillus acidophilus Fermented Broths Enriched with Eruca sativa Seed Extracts on Intestinal Barrier and Inflammation in a Co-Culture System of an Enterohemorrhagic Escherichia coli and Human Intestinal Cells. Nutrients 2020;12:E3064. [PMID: 33036498 DOI: 10.3390/nu12103064] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
53 Morsink MAJ, Willemen NGA, Leijten J, Bansal R, Shin SR. Immune Organs and Immune Cells on a Chip: An Overview of Biomedical Applications. Micromachines (Basel) 2020;11:E849. [PMID: 32932680 DOI: 10.3390/mi11090849] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 7.3] [Reference Citation Analysis]
54 González-quilen C, Rodríguez-gallego E, Beltrán-debón R, Pinent M, Ardévol A, Teresa Blay M, Terra X. Beneficial Effects of Proanthocyanidins on Intestinal Permeability and Its Relationship with Inflammation. Weight Management 2020. [DOI: 10.5772/intechopen.91212] [Reference Citation Analysis]
55 Roh TT, Chen Y, Rudolph S, Gee M, Kaplan DL. InVitro Models of Intestine Innate Immunity. Trends Biotechnol 2021;39:274-85. [PMID: 32854949 DOI: 10.1016/j.tibtech.2020.07.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
56 Schoultz I, Keita ÅV. The Intestinal Barrier and Current Techniques for the Assessment of Gut Permeability. Cells 2020;9:E1909. [PMID: 32824536 DOI: 10.3390/cells9081909] [Cited by in Crossref: 91] [Cited by in F6Publishing: 97] [Article Influence: 30.3] [Reference Citation Analysis]
57 Gjorevski N, Avignon B, Gérard R, Cabon L, Roth AB, Bscheider M, Moisan A. Neutrophilic infiltration in organ-on-a-chip model of tissue inflammation. Lab Chip 2020;20:3365-74. [PMID: 32761043 DOI: 10.1039/d0lc00417k] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 8.3] [Reference Citation Analysis]
58 Lemoine L, Dieckmann R, Al Dahouk S, Vincze S, Luch A, Tralau T. Microbially competent 3D skin: a test system that reveals insight into host-microbe interactions and their potential toxicological impact. Arch Toxicol 2020;94:3487-502. [PMID: 32681188 DOI: 10.1007/s00204-020-02841-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
59 Weber L, Kuck K, Jürgenliemk G, Heilmann J, Lipowicz B, Vissiennon C. Anti-Inflammatory and Barrier-Stabilising Effects of Myrrh, Coffee Charcoal and Chamomile Flower Extract in a Co-Culture Cell Model of the Intestinal Mucosa. Biomolecules 2020;10:E1033. [PMID: 32664498 DOI: 10.3390/biom10071033] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
60 Lee SM, Kim N, Ji YK, Kim YN, Jeon Y, Heo JD, Jeong EJ, Rho J. Sulfoquinovosylmonoacylglycerols regulating intestinal inflammation in co-culture system from the brown alga <italic>Turbinaria ornata</italic>. ALGAE 2020;35:201-12. [DOI: 10.4490/algae.2020.35.5.23] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
61 Zhang H, Whalley RD, Ferreira AM, Dalgarno K. High throughput physiological micro-models for in vitro pre-clinical drug testing: a review of engineering systems approaches. Prog Biomed Eng 2020;2:022001. [DOI: 10.1088/2516-1091/ab7cc4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
62 Lehner R, Wohlleben W, Septiadi D, Landsiedel R, Petri-fink A, Rothen-rutishauser B. A novel 3D intestine barrier model to study the immune response upon exposure to microplastics. Arch Toxicol 2020;94:2463-79. [DOI: 10.1007/s00204-020-02750-1] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]
63 Van Laar ADE, Grootaert C, Van Camp J. Rare mono- and disaccharides as healthy alternative for traditional sugars and sweeteners? Crit Rev Food Sci Nutr 2021;61:713-41. [PMID: 32212974 DOI: 10.1080/10408398.2020.1743966] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
64 Higa LH, Schilrreff P, Briski AM, Jerez HE, de Farias MA, Villares Portugal R, Romero EL, Morilla MJ. Bacterioruberin from Haloarchaea plus dexamethasone in ultra-small macrophage-targeted nanoparticles as potential intestinal repairing agent. Colloids Surf B Biointerfaces 2020;191:110961. [PMID: 32208325 DOI: 10.1016/j.colsurfb.2020.110961] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
65 González-Quilen C, Rodríguez-Gallego E, Beltrán-Debón R, Pinent M, Ardévol A, Blay MT, Terra X. Health-Promoting Properties of Proanthocyanidins for Intestinal Dysfunction. Nutrients 2020;12:E130. [PMID: 31906505 DOI: 10.3390/nu12010130] [Cited by in Crossref: 31] [Cited by in F6Publishing: 31] [Article Influence: 10.3] [Reference Citation Analysis]
66 Däullary T, Fey C, Berger C, Metzger M, Zdzieblo D. Bioartificial gut—current state of small intestinal tissue engineering. Biomaterials for Organ and Tissue Regeneration 2020. [DOI: 10.1016/b978-0-08-102906-0.00025-8] [Reference Citation Analysis]
67 Renggli K, Frey O. Design and engineering of multiorgan systems. Organ-on-a-chip 2020. [DOI: 10.1016/b978-0-12-817202-5.00012-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
68 Nakajima T, Sasaki K, Yamamori A, Sakurai K, Miyata K, Watanabe T, Matsunaga YT. A simple three-dimensional gut model constructed in a restricted ductal microspace induces intestinal epithelial cell integrity and facilitates absorption assays. Biomater Sci 2020;8:5615-27. [DOI: 10.1039/d0bm00763c] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
69 Belleghem SMV, Mahadik B, Snodderly KL, Fisher JP. Overview of Tissue Engineering Concepts and Applications. Biomaterials Science 2020. [DOI: 10.1016/b978-0-12-816137-1.00081-7] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
70 Ali M, Yang F, Jansen JA, Walboomers XF. Lipoxin suppresses inflammation via the TLR4/MyD88/NF-κB pathway in periodontal ligament cells. Oral Dis 2020;26:429-38. [PMID: 31814225 DOI: 10.1111/odi.13250] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
71 Kämpfer AAM, Urbán P, La Spina R, Jiménez IO, Kanase N, Stone V, Kinsner-Ovaskainen A. Ongoing inflammation enhances the toxicity of engineered nanomaterials: Application of an in vitro co-culture model of the healthy and inflamed intestine. Toxicol In Vitro 2020;63:104738. [PMID: 31760064 DOI: 10.1016/j.tiv.2019.104738] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
72 Lee SM, Kim NH, Lee S, Kim YN, Heo JD, Jeong EJ, Rho JR. Deacetylphylloketal, a New Phylloketal Derivative from a Marine Sponge, Genus Phyllospongia, with Potent Anti-Inflammatory Activity in In Vitro Co-Culture Model of Intestine. Mar Drugs 2019;17:E634. [PMID: 31717394 DOI: 10.3390/md17110634] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
73 Ren MT, Gu ML, Zhou XX, Yu MS, Pan HH, Ji F, Ding CY. Sirtuin 1 alleviates endoplasmic reticulum stress-mediated apoptosis of intestinal epithelial cells in ulcerative colitis. World J Gastroenterol 2019; 25(38): 5800-5813 [PMID: 31636473 DOI: 10.3748/wjg.v25.i38.5800] [Cited by in CrossRef: 33] [Cited by in F6Publishing: 33] [Article Influence: 8.3] [Reference Citation Analysis]
74 Lobo de Sá FD, Butkevych E, Nattramilarasu PK, Fromm A, Mousavi S, Moos V, Golz JC, Stingl K, Kittler S, Seinige D, Kehrenberg C, Heimesaat MM, Bereswill S, Schulzke JD, Bücker R. Curcumin Mitigates Immune-Induced Epithelial Barrier Dysfunction by Campylobacter jejuni. Int J Mol Sci 2019;20:E4830. [PMID: 31569415 DOI: 10.3390/ijms20194830] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
75 Roh TT, Chen Y, Paul HT, Guo C, Kaplan DL. 3D bioengineered tissue model of the large intestine to study inflammatory bowel disease. Biomaterials 2019;225:119517. [PMID: 31580968 DOI: 10.1016/j.biomaterials.2019.119517] [Cited by in Crossref: 37] [Cited by in F6Publishing: 40] [Article Influence: 9.3] [Reference Citation Analysis]
76 Lee SM, Kim NH, Lee S, Kim YN, Heo JD, Rho JR, Jeong EJ. (10Z)-Debromohymenialdisine from Marine Sponge Stylissa sp. Regulates Intestinal Inflammatory Responses in Co-Culture Model of Epithelial Caco-2 Cells and THP-1 Macrophage Cells. Molecules 2019;24:E3394. [PMID: 31540496 DOI: 10.3390/molecules24183394] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
77 Gleeson JP, McCartney F. Striving Towards the Perfect In Vitro Oral Drug Absorption Model. Trends Pharmacol Sci 2019;40:720-4. [PMID: 31422894 DOI: 10.1016/j.tips.2019.07.010] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
78 Polewski MA, Esquivel-alvarado D, Wedde NS, Kruger CG, Reed JD. Isolation and Characterization of Blueberry Polyphenolic Components and Their Effects on Gut Barrier Dysfunction. J Agric Food Chem 2020;68:2940-7. [DOI: 10.1021/acs.jafc.9b01689] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
79 Ude VC, Brown DM, Stone V, Johnston HJ. Using 3D gastrointestinal tract in vitro models with microfold cells and mucus secreting ability to assess the hazard of copper oxide nanomaterials. J Nanobiotechnology 2019;17:70. [PMID: 31113462 DOI: 10.1186/s12951-019-0503-1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 5.8] [Reference Citation Analysis]
80 Renggli K, Rousset N, Lohasz C, Nguyen OTP, Hierlemann A. Integrated Microphysiological Systems: Transferable Organ Models and Recirculating Flow. Adv Biosyst 2019;3:e1900018. [PMID: 32627410 DOI: 10.1002/adbi.201900018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
81 Calatayud M, Dezutter O, Hernandez-Sanabria E, Hidalgo-Martinez S, Meysman FJR, Van de Wiele T. Development of a host-microbiome model of the small intestine. FASEB J 2019;33:3985-96. [PMID: 30521380 DOI: 10.1096/fj.201801414R] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
82 Böhmert L, König L, Sieg H, Lichtenstein D, Paul N, Braeuning A, Voigt A, Lampen A. In vitro nanoparticle dosimetry for adherent growing cell monolayers covering bottom and lateral walls. Part Fibre Toxicol 2018;15:42. [PMID: 30376850 DOI: 10.1186/s12989-018-0278-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
83 Gatto F, Bardi G. Metallic Nanoparticles: General Research Approaches to Immunological Characterization. Nanomaterials (Basel) 2018;8:E753. [PMID: 30248990 DOI: 10.3390/nano8100753] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]