BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Elbadawi M, McCoubrey LE, Gavins FKH, Ong JJ, Goyanes A, Gaisford S, Basit AW. Disrupting 3D printing of medicines with machine learning. Trends Pharmacol Sci 2021;42:745-57. [PMID: 34238624 DOI: 10.1016/j.tips.2021.06.002] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 32.0] [Reference Citation Analysis]
Number Citing Articles
1 Ong JJ, Castro BM, Gaisford S, Cabalar P, Basit AW, Pérez G, Goyanes A. Accelerating 3D printing of pharmaceutical products using machine learning. Int J Pharm X 2022;4:100120. [PMID: 35755603 DOI: 10.1016/j.ijpx.2022.100120] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
2 Sureshkumar V, Rajasomashekar S, Sarala B. An efficient underground water prediction using optimal deep neural network. Concurrency and Computation 2022. [DOI: 10.1002/cpe.7421] [Reference Citation Analysis]
3 Guo AX, Cheng L, Zhan S, Zhang S, Xiong W, Wang Z, Wang G, Cao SC. Biomedical applications of the powder-based 3D printed titanium alloys: A review. Journal of Materials Science & Technology 2022;125:252-64. [DOI: 10.1016/j.jmst.2021.11.084] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
4 Meenakshi DU, Nandakumar S, Francis AP, Sweety P, Fuloria S, Fuloria NK, Subramaniyan V, Khan SA. Deep Learning and Site‐Specific Drug Delivery. Deep Learning for Targeted Treatments 2022. [DOI: 10.1002/9781119857983.ch1] [Reference Citation Analysis]
5 Rojek I, Kopowski J, Kotlarz P, Dorożyński J, Dostatni E, Mikołajewski D. Deep Learning in Design of Semi-Automated 3D Printed Chainmail with Pre-Programmed Directional Functions for Hand Exoskeleton. Applied Sciences 2022;12:8106. [DOI: 10.3390/app12168106] [Reference Citation Analysis]
6 Lindner N, Blaeser A. Scalable Biofabrication: A Perspective on the Current State and Future Potentials of Process Automation in 3D-Bioprinting Applications. Front Bioeng Biotechnol 2022;10:855042. [PMID: 35669061 DOI: 10.3389/fbioe.2022.855042] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Bedoya MG, Montoya DR, Tabilo-munizaga G, Pérez-won M, Lemus-mondaca R. Promising perspectives on novel protein food sources combining artificial intelligence and 3D food printing for food industry. Trends in Food Science & Technology 2022. [DOI: 10.1016/j.tifs.2022.05.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Kopowski J, Mikołajewski D, Kotlarz P, Dostatni E, Rojek I. A Semi-Automated 3D-Printed Chainmail Design Algorithm with Preprogrammed Directional Functions for Hand Exoskeleton. Applied Sciences 2022;12:5007. [DOI: 10.3390/app12105007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Serov N, Vinogradov V. Artificial intelligence to bring nanomedicine to life. Adv Drug Deliv Rev 2022;184:114194. [PMID: 35283223 DOI: 10.1016/j.addr.2022.114194] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
10 Wang H, Lu R, Yu D, Sun G. Machine Vision Nondestructive Inspection System Assisted by Industrial IoT Supervision Mechanism. Mathematical Problems in Engineering 2022;2022:1-11. [DOI: 10.1155/2022/8449518] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Varghese R, Sood P, Salvi S, Karsiya J, Kumar D. 3D printing in the pharmaceutical sector: Advances and evidences. Sensors International 2022. [DOI: 10.1016/j.sintl.2022.100177] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Trenfield SJ, Awad A, McCoubrey LE, Elbadawi M, Goyanes A, Gaisford S, Basit AW. Advancing pharmacy and healthcare with virtual digital technologies. Adv Drug Deliv Rev 2022;182:114098. [PMID: 34998901 DOI: 10.1016/j.addr.2021.114098] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
13 Awad A, Madla CM, McCoubrey LE, Ferraro F, Gavins FKH, Buanz A, Gaisford S, Orlu M, Siepmann F, Siepmann J, Basit AW. Clinical translation of advanced colonic drug delivery technologies. Adv Drug Deliv Rev 2022;181:114076. [PMID: 34890739 DOI: 10.1016/j.addr.2021.114076] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
14 Bao Y, Paunović N, Leroux J. Challenges and Opportunities in 3D Printing of Biodegradable Medical Devices by Emerging Photopolymerization Techniques. Adv Funct Materials 2022;32:2109864. [DOI: 10.1002/adfm.202109864] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
15 Wang S, Di J, Wang D, Dai X, Hua Y, Gao X, Zheng A, Gao J. State-of-the-Art Review of Artificial Neural Networks to Predict, Characterize and Optimize Pharmaceutical Formulation. Pharmaceutics 2022;14:183. [PMID: 35057076 DOI: 10.3390/pharmaceutics14010183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Gavins FKH, Fu Z, Elbadawi M, Basit AW, Rodrigues MRD, Orlu M. Machine learning predicts the effect of food on orally administered medicines. Int J Pharm 2022;611:121329. [PMID: 34852288 DOI: 10.1016/j.ijpharm.2021.121329] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Wang F, Elbadawi M, Tsilova SL, Gaisford S, Basit AW, Parhizkar M. Machine learning to empower electrohydrodynamic processing. Materials Science and Engineering: C 2022;132:112553. [DOI: 10.1016/j.msec.2021.112553] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Chatterjee P, Chakraborty C. Emergence of 3D Printing Technology in the Intelligent Healthcare Systems: A Brief Drug Delivery Approach. Intelligent Healthcare 2022. [DOI: 10.1007/978-981-16-8150-9_18] [Reference Citation Analysis]
19 Gabriela Crisan A, Iurian S, Porfire A, Maria Rus L, Bogdan C, Casian T, Ciceo Lucacel R, Turza A, Porav S, Tomuta I. QbD guided development of immediate release FDM-3D printed tablets with customizable API doses. Int J Pharm 2021;:121411. [PMID: 34954001 DOI: 10.1016/j.ijpharm.2021.121411] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
20 O'Reilly CS, Elbadawi M, Desai N, Gaisford S, Basit AW, Orlu M. Machine Learning and Machine Vision Accelerate 3D Printed Orodispersible Film Development. Pharmaceutics 2021;13:2187. [PMID: 34959468 DOI: 10.3390/pharmaceutics13122187] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
21 Choudhury D, Sharma PK, Suryanarayana Murty U, Banerjee S. Stereolithography-assisted fabrication of 3D printed polymeric film for topical berberine delivery: in-vitro, ex-vivo and in-vivo investigations. J Pharm Pharmacol 2021:rgab158. [PMID: 34850065 DOI: 10.1093/jpp/rgab158] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 McCoubrey LE, Thomaidou S, Elbadawi M, Gaisford S, Orlu M, Basit AW. Machine Learning Predicts Drug Metabolism and Bioaccumulation by Intestinal Microbiota. Pharmaceutics 2021;13:2001. [PMID: 34959282 DOI: 10.3390/pharmaceutics13122001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
23 Sondhi P, Stine KJ. Methods to Generate Structurally Hierarchical Architectures in Nanoporous Coinage Metals. Coatings 2021;11:1440. [DOI: 10.3390/coatings11121440] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Xu X, Seijo-Rabina A, Awad A, Rial C, Gaisford S, Basit AW, Goyanes A. Smartphone-enabled 3D printing of medicines. Int J Pharm 2021;609:121199. [PMID: 34673166 DOI: 10.1016/j.ijpharm.2021.121199] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 14.0] [Reference Citation Analysis]
25 Awad A, Trenfield SJ, Pollard TD, Ong JJ, Elbadawi M, McCoubrey LE, Goyanes A, Gaisford S, Basit AW. Connected healthcare: Improving patient care using digital health technologies. Adv Drug Deliv Rev 2021;178:113958. [PMID: 34478781 DOI: 10.1016/j.addr.2021.113958] [Cited by in Crossref: 27] [Cited by in F6Publishing: 33] [Article Influence: 27.0] [Reference Citation Analysis]
26 Eleftheriadis GK, Genina N, Boetker J, Rantanen J. Modular design principle based on compartmental drug delivery systems. Adv Drug Deliv Rev 2021;178:113921. [PMID: 34390776 DOI: 10.1016/j.addr.2021.113921] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
27 Xu X, Awwad S, Diaz-Gomez L, Alvarez-Lorenzo C, Brocchini S, Gaisford S, Goyanes A, Basit AW. 3D Printed Punctal Plugs for Controlled Ocular Drug Delivery. Pharmaceutics 2021;13:1421. [PMID: 34575497 DOI: 10.3390/pharmaceutics13091421] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
28 Muñiz Castro B, Elbadawi M, Ong JJ, Pollard T, Song Z, Gaisford S, Pérez G, Basit AW, Cabalar P, Goyanes A. Machine learning predicts 3D printing performance of over 900 drug delivery systems. J Control Release 2021;337:530-45. [PMID: 34339755 DOI: 10.1016/j.jconrel.2021.07.046] [Cited by in Crossref: 31] [Cited by in F6Publishing: 26] [Article Influence: 31.0] [Reference Citation Analysis]
29 Boniatti J, Januskaite P, Fonseca LBD, Viçosa AL, Amendoeira FC, Tuleu C, Basit AW, Goyanes A, Ré MI. Direct Powder Extrusion 3D Printing of Praziquantel to Overcome Neglected Disease Formulation Challenges in Paediatric Populations. Pharmaceutics 2021;13:1114. [PMID: 34452075 DOI: 10.3390/pharmaceutics13081114] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
30 McCoubrey LE, Gaisford S, Orlu M, Basit AW. Predicting drug-microbiome interactions with machine learning. Biotechnol Adv 2021;:107797. [PMID: 34260950 DOI: 10.1016/j.biotechadv.2021.107797] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
31 McCoubrey LE, Elbadawi M, Orlu M, Gaisford S, Basit AW. Machine Learning Uncovers Adverse Drug Effects on Intestinal Bacteria. Pharmaceutics 2021;13:1026. [PMID: 34371718 DOI: 10.3390/pharmaceutics13071026] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 15.0] [Reference Citation Analysis]