BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dammes N, Peer D. Paving the Road for RNA Therapeutics. Trends Pharmacol Sci 2020;41:755-75. [PMID: 32893005 DOI: 10.1016/j.tips.2020.08.004] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 19.0] [Reference Citation Analysis]
Number Citing Articles
1 Li C, Wang D, Jiang Z, Gao Y, Sun L, Li R, Chen M, Lin C, Liu D. Non-coding RNAs in diabetes mellitus and diabetic cardiovascular disease. Front Endocrinol 2022;13:961802. [DOI: 10.3389/fendo.2022.961802] [Reference Citation Analysis]
2 Conti BA, Oppikofer M. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics. Trends Pharmacol Sci 2022:S0165-6147(22)00154-7. [PMID: 36028355 DOI: 10.1016/j.tips.2022.07.001] [Reference Citation Analysis]
3 Huang S, Le H, Hong G, Chen G, Zhang F, Lu L, Zhang X, Qiu Y, Wang Z, Zhang Q, Ouyang G, Shen J. An all-in-one biomimetic iron-small interfering RNA nanoplatform induces ferroptosis for cancer therapy. Acta Biomaterialia 2022. [DOI: 10.1016/j.actbio.2022.06.017] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Robinson EL, Port JD. Utilization and Potential of RNA-Based Therapies in Cardiovascular Disease. JACC: Basic to Translational Science 2022. [DOI: 10.1016/j.jacbts.2022.02.003] [Reference Citation Analysis]
5 Singh P, Muhammad I, Nelson NE, Tran KTM, Vinikoor T, Chorsi MT, D'Orio E, Nguyen TD. Transdermal delivery for gene therapy. Drug Deliv Transl Res 2022. [PMID: 35538189 DOI: 10.1007/s13346-022-01138-1] [Reference Citation Analysis]
6 Tang Y, Li H, Chen C. Non-coding RNA-Associated Therapeutic Strategies in Atherosclerosis. Front Cardiovasc Med 2022;9:889743. [DOI: 10.3389/fcvm.2022.889743] [Reference Citation Analysis]
7 Domazet-lošo T. mRNA Vaccines: Why Is the Biology of Retroposition Ignored? Genes 2022;13:719. [DOI: 10.3390/genes13050719] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Simkin D, Ambrosi C, Marshall KA, Williams LA, Eisenberg J, Gharib M, Dempsey GT, George AL Jr, McManus OB, Kiskinis E. 'Channeling' therapeutic discovery for epileptic encephalopathy through iPSC technologies. Trends Pharmacol Sci 2022;43:392-405. [PMID: 35427475 DOI: 10.1016/j.tips.2022.03.001] [Reference Citation Analysis]
9 Peng B, Nguyen TM, Jayasinghe MK, Gao C, Pham TT, Vu LT, Yeo EYM, Yap G, Wang L, Goh BC, Tam WL, Luo D, Le MT. Robust delivery of RIG‐I agonists using extracellular vesicles for anti‐cancer immunotherapy. J of Extracellular Vesicle 2022;11. [DOI: 10.1002/jev2.12187] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Guo Y, Xie Y, Luo Y. The Role of Long Non-Coding RNAs in the Tumor Immune Microenvironment. Front Immunol 2022;13:851004. [PMID: 35222443 DOI: 10.3389/fimmu.2022.851004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Pattipeiluhu R, Arias-Alpizar G, Basha G, Chan KYT, Bussmann J, Sharp TH, Moradi MA, Sommerdijk N, Harris EN, Cullis PR, Kros A, Witzigmann D, Campbell F. Anionic Lipid Nanoparticles Preferentially Deliver mRNA to the Hepatic Reticuloendothelial System. Adv Mater 2022;34:e2201095. [PMID: 35218106 DOI: 10.1002/adma.202201095] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Rhym LH, Anderson DG. Nanoscale delivery platforms for RNA therapeutics: Challenges and the current state of the art. Med 2022;3:167-87. [DOI: 10.1016/j.medj.2022.02.001] [Reference Citation Analysis]
13 Ozer I, Pitoc GA, Layzer JM, Moreno A, Olson LB, Layzer KD, Hucknall AM, Sullenger BA, Chilkoti A. PEG-Like Brush Polymer Conjugate of RNA Aptamer That Shows Reversible Anticoagulant Activity and Minimal Immune Response. Adv Mater 2022;34:e2107852. [PMID: 34994037 DOI: 10.1002/adma.202107852] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Monaghan TM, Polytarchou C, Kao D, Alexander C, Gurnani P. Therapeutic potential of miRNAs in Clostridioides difficile infection. Future Microbiol 2022. [PMID: 35172603 DOI: 10.2217/fmb-2021-0311] [Reference Citation Analysis]
15 Kong N, Zhang R, Wu G, Sui X, Wang J, Kim NY, Blake S, De D, Xie T, Cao Y, Tao W. Intravesical delivery of KDM6A-mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer. Proc Natl Acad Sci U S A 2022;119:e2112696119. [PMID: 35131941 DOI: 10.1073/pnas.2112696119] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
16 Mehta S, Zhang J. Liquid-liquid phase separation drives cellular function and dysfunction in cancer. Nat Rev Cancer 2022. [PMID: 35149762 DOI: 10.1038/s41568-022-00444-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
17 Paramasivam P, Franke C, Stöter M, Höijer A, Bartesaghi S, Sabirsh A, Lindfors L, Arteta MY, Dahlén A, Bak A, Andersson S, Kalaidzidis Y, Bickle M, Zerial M. Endosomal escape of delivered mRNA from endosomal recycling tubules visualized at the nanoscale. J Cell Biol 2022;221:e202110137. [PMID: 34882187 DOI: 10.1083/jcb.202110137] [Reference Citation Analysis]
18 Van de Vyver T, De Smedt SC, Raemdonck K. Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Adv Drug Deliv Rev 2022;181:114041. [PMID: 34763002 DOI: 10.1016/j.addr.2021.114041] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
19 Tarab-Ravski D, Stotsky-Oterin L, Peer D. Delivery strategies of RNA therapeutics to leukocytes. J Control Release 2022:S0168-3659(22)00030-X. [PMID: 35041904 DOI: 10.1016/j.jconrel.2022.01.016] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
20 Li N, Sun Y, Fu Y, Sun K. RNA Drug Delivery Using Biogenic Nanovehicles for Cancer Therapy. Front Pharmacol 2021;12:734443. [PMID: 35002692 DOI: 10.3389/fphar.2021.734443] [Reference Citation Analysis]
21 Aditham A, Shi H, Guo J, Zeng H, Zhou Y, Wade SD, Huang J, Liu J, Wang X. Chemically Modified mocRNAs for Highly Efficient Protein Expression in Mammalian Cells. ACS Chem Biol 2022. [PMID: 34995053 DOI: 10.1021/acschembio.1c00569] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
22 Carvalho BG, Ceccato BT, Michelon M, Han SW, de la Torre LG. Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application. Pharmaceutics 2022;14:141. [PMID: 35057037 DOI: 10.3390/pharmaceutics14010141] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
23 Park H, Otte A, Park K. Evolution of drug delivery systems: From 1950 to 2020 and beyond. J Control Release 2021;342:53-65. [PMID: 34971694 DOI: 10.1016/j.jconrel.2021.12.030] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 18.0] [Reference Citation Analysis]
24 Hussain Y, Cui JH, Khan H, Makvandi P, Alam W. Biomacromolecule-mediated pulmonary delivery of siRNA and anti-sense oligos: challenges and possible solutions. Expert Rev Mol Med 2021;23:e22. [PMID: 34906269 DOI: 10.1017/erm.2021.25] [Reference Citation Analysis]
25 Xiao L, Jun YW, Kool ET. DNA Tiling Enables Precise Acylation-Based Labeling and Control of mRNA. Angew Chem Int Ed Engl 2021;60:26798-805. [PMID: 34624169 DOI: 10.1002/anie.202112106] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
26 Katz JS, Chou DK, Christian TR, Das TK, Patel M, Singh SN, Wen Y. Emerging Challenges and Innovations in Surfactant-mediated Stabilization of Biologic Formulations. J Pharm Sci 2021:S0022-3549(21)00655-9. [PMID: 34883096 DOI: 10.1016/j.xphs.2021.12.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
27 Niculescu AG, Bîrcă AC, Grumezescu AM. New Applications of Lipid and Polymer-Based Nanoparticles for Nucleic Acids Delivery. Pharmaceutics 2021;13:2053. [PMID: 34959335 DOI: 10.3390/pharmaceutics13122053] [Reference Citation Analysis]
28 Seufert L, Benzing T, Ignarski M, Müller RU. RNA-binding proteins and their role in kidney disease. Nat Rev Nephrol 2021. [PMID: 34732838 DOI: 10.1038/s41581-021-00497-1] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
29 Marschall ALJ. Targeting the Inside of Cells with Biologicals: Chemicals as a Delivery Strategy. BioDrugs 2021;35:643-71. [PMID: 34705260 DOI: 10.1007/s40259-021-00500-y] [Reference Citation Analysis]
30 Fang JS, Hultgren NW, Hughes CCW. Regulation of Partial and Reversible Endothelial-to-Mesenchymal Transition in Angiogenesis. Front Cell Dev Biol 2021;9:702021. [PMID: 34692672 DOI: 10.3389/fcell.2021.702021] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
31 Kyei-Barffour I, Addo SA, Aninagyei E, Ghartey-Kwansah G, Acheampong DO. Sterilizing Immunity against COVID-19: Developing Helper T cells I and II activating vaccines is imperative. Biomed Pharmacother 2021;144:112282. [PMID: 34624675 DOI: 10.1016/j.biopha.2021.112282] [Reference Citation Analysis]
32 Bruch A, Kelani AA, Blango MG. RNA-based therapeutics to treat human fungal infections. Trends Microbiol 2021:S0966-842X(21)00218-3. [PMID: 34635448 DOI: 10.1016/j.tim.2021.09.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
33 Buonaiuto G, Desideri F, Taliani V, Ballarino M. Muscle Regeneration and RNA: New Perspectives for Ancient Molecules. Cells 2021;10:2512. [PMID: 34685492 DOI: 10.3390/cells10102512] [Reference Citation Analysis]
34 Gómez X, Sanon S, Zambrano K, Asquel S, Bassantes M, Morales JE, Otáñez G, Pomaquero C, Villarroel S, Zurita A, Calvache C, Celi K, Contreras T, Corrales D, Naciph MB, Peña J, Caicedo A. Key points for the development of antioxidant cocktails to prevent cellular stress and damage caused by reactive oxygen species (ROS) during manned space missions. NPJ Microgravity 2021;7:35. [PMID: 34556658 DOI: 10.1038/s41526-021-00162-8] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
35 Jurgielewicz B, Stice S, Yao Y. Therapeutic Potential of Nucleic Acids when Combined with Extracellular Vesicles. Aging Dis 2021;12:1476-93. [PMID: 34527423 DOI: 10.14336/AD.2021.0708] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
36 Gao M, Zhang Q, Feng XH, Liu J. Synthetic modified messenger RNA for therapeutic applications. Acta Biomater 2021;131:1-15. [PMID: 34133982 DOI: 10.1016/j.actbio.2021.06.020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
37 Mollocana-Lara EC, Ni M, Agathos SN, Gonzales-Zubiate FA. The infinite possibilities of RNA therapeutics. J Ind Microbiol Biotechnol 2021:kuab063. [PMID: 34463324 DOI: 10.1093/jimb/kuab063] [Reference Citation Analysis]
38 Jia TZ, Wang P, Niwa T, Mamajanov I. Connecting primitive phase separation to biotechnology, synthetic biology, and engineering. J Biosci 2021;46. [DOI: 10.1007/s12038-021-00204-z] [Reference Citation Analysis]
39 Graczyk A, Pawlowska R, Chworos A. Gold Nanoparticles as Carriers for Functional RNA Nanostructures. Bioconjug Chem 2021. [PMID: 34323473 DOI: 10.1021/acs.bioconjchem.1c00211] [Reference Citation Analysis]
40 Pandey M, Ojha D, Bansal S, Rode AB, Chawla G. From bench side to clinic: Potential and challenges of RNA vaccines and therapeutics in infectious diseases. Mol Aspects Med 2021;:101003. [PMID: 34332771 DOI: 10.1016/j.mam.2021.101003] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
41 Kampel L, Goldsmith M, Ramishetti S, Veiga N, Rosenblum D, Gutkin A, Chatterjee S, Penn M, Lerman G, Peer D, Muhanna N. Therapeutic inhibitory RNA in head and neck cancer via functional targeted lipid nanoparticles. J Control Release 2021;337:378-89. [PMID: 34303750 DOI: 10.1016/j.jconrel.2021.07.034] [Reference Citation Analysis]
42 Berkowitz SA, Laue T. Boundary convection during velocity sedimentation in the Optima analytical ultracentrifuge. Anal Biochem 2021;:114306. [PMID: 34274312 DOI: 10.1016/j.ab.2021.114306] [Reference Citation Analysis]
43 Martin WJ, Grandi P, Marcia M. Screening strategies for identifying RNA- and ribonucleoprotein-targeted compounds. Trends Pharmacol Sci 2021;42:758-71. [PMID: 34215444 DOI: 10.1016/j.tips.2021.06.001] [Reference Citation Analysis]
44 Sabnis RW. Novel Fragment-Based Screening Method to Identify Small Molecules That Selectively Bind RNA. ACS Med Chem Lett 2021;12:868-9. [PMID: 34141061 DOI: 10.1021/acsmedchemlett.1c00247] [Reference Citation Analysis]
45 Liu S, Deng S, Li X, Cheng D. Size- and Surface- Dual Engineered Small Polyplexes for Efficiently Targeting Delivery of siRNA. Molecules 2021;26:3238. [PMID: 34072265 DOI: 10.3390/molecules26113238] [Reference Citation Analysis]
46 Demelenne A, Servais AC, Crommen J, Fillet M. Analytical techniques currently used in the pharmaceutical industry for the quality control of RNA-based therapeutics and ongoing developments. J Chromatogr A 2021;1651:462283. [PMID: 34107400 DOI: 10.1016/j.chroma.2021.462283] [Reference Citation Analysis]
47 Forbes TA, Brown BD, Lai C. Therapeutic RNA interference: A novel approach to the treatment of primary hyperoxaluria. Br J Clin Pharmacol 2021. [PMID: 34022071 DOI: 10.1111/bcp.14925] [Reference Citation Analysis]
48 Korzuch J, Rak M, Balin K, Zubko M, Głowacka O, Dulski M, Musioł R, Madeja Z, Serda M. Towards water-soluble [60]fullerenes for the delivery of siRNA in a prostate cancer model. Sci Rep 2021;11:10565. [PMID: 34012024 DOI: 10.1038/s41598-021-89943-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
49 Prieto-Colomina A, Fernández V, Chinnappa K, Borrell V. MiRNAs in early brain development and pediatric cancer: At the intersection between healthy and diseased embryonic development. Bioessays 2021;43:e2100073. [PMID: 33998002 DOI: 10.1002/bies.202100073] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
50 Morris G, O'Brien D, Henshall DC. Opportunities and challenges for microRNA-targeting therapeutics for epilepsy. Trends Pharmacol Sci 2021;42:605-16. [PMID: 33992468 DOI: 10.1016/j.tips.2021.04.007] [Reference Citation Analysis]
51 Wu Y, Zhan S, Xu Y, Gao X. RNA modifications in cardiovascular diseases, the potential therapeutic targets. Life Sci 2021;278:119565. [PMID: 33965380 DOI: 10.1016/j.lfs.2021.119565] [Reference Citation Analysis]
52 Schellinger IN, Dannert AR, Mattern K, Raaz U, Tsao PS. Unresolved Issues in RNA Therapeutics in Vascular Diseases With a Focus on Aneurysm Disease. Front Cardiovasc Med 2021;8:571076. [PMID: 33937351 DOI: 10.3389/fcvm.2021.571076] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
53 Dutta K, Das R, Medeiros J, Kanjilal P, Thayumanavan S. Charge‐Conversion Strategies for Nucleic Acid Delivery. Adv Funct Mater 2021;31:2011103. [DOI: 10.1002/adfm.202011103] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
54 Schlich M, Palomba R, Costabile G, Mizrahy S, Pannuzzo M, Peer D, Decuzzi P. Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles. Bioeng Transl Med 2021;:e10213. [PMID: 33786376 DOI: 10.1002/btm2.10213] [Cited by in Crossref: 5] [Cited by in F6Publishing: 34] [Article Influence: 5.0] [Reference Citation Analysis]
55 Cartón-García F, Saande CJ, Meraviglia-Crivelli D, Aldabe R, Pastor F. Oligonucleotide-Based Therapies for Renal Diseases. Biomedicines 2021;9:303. [PMID: 33809425 DOI: 10.3390/biomedicines9030303] [Reference Citation Analysis]
56 Joo Y, Benavides DR. Local Protein Translation and RNA Processing of Synaptic Proteins in Autism Spectrum Disorder. Int J Mol Sci 2021;22:2811. [PMID: 33802132 DOI: 10.3390/ijms22062811] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
57 Shanaa OA, Rumyantsev A, Sambuk E, Padkina M. In Vivo Production of RNA Aptamers and Nanoparticles: Problems and Prospects. Molecules 2021;26:1422. [PMID: 33800717 DOI: 10.3390/molecules26051422] [Reference Citation Analysis]
58 Kim J, Eygeris Y, Gupta M, Sahay G. Self-assembled mRNA vaccines. Adv Drug Deliv Rev 2021;170:83-112. [PMID: 33400957 DOI: 10.1016/j.addr.2020.12.014] [Cited by in Crossref: 79] [Cited by in F6Publishing: 63] [Article Influence: 79.0] [Reference Citation Analysis]
59 Krienke C, Kolb L, Diken E, Streuber M, Kirchhoff S, Bukur T, Akilli-Öztürk Ö, Kranz LM, Berger H, Petschenka J, Diken M, Kreiter S, Yogev N, Waisman A, Karikó K, Türeci Ö, Sahin U. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 2021;371:145-53. [PMID: 33414215 DOI: 10.1126/science.aay3638] [Cited by in Crossref: 44] [Cited by in F6Publishing: 99] [Article Influence: 44.0] [Reference Citation Analysis]
60 Lokras A, Thakur A, Wadhwa A, Thanki K, Franzyk H, Foged C. Optimizing the Intracellular Delivery of Therapeutic Anti-inflammatory TNF-α siRNA to Activated Macrophages Using Lipidoid-Polymer Hybrid Nanoparticles. Front Bioeng Biotechnol 2020;8:601155. [PMID: 33520957 DOI: 10.3389/fbioe.2020.601155] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
61 Zeng L, Li D, Tong W, Shi T, Ning B. Biochemical features and mutations of key proteins in SARS-CoV-2 and their impacts on RNA therapeutics. Biochem Pharmacol 2021;189:114424. [PMID: 33482149 DOI: 10.1016/j.bcp.2021.114424] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
62 Ulkoski D, Munson MJ, Jacobson ME, Palmer CR, Carson CS, Sabirsh A, Wilson JT, Krishnamurthy VR. High-Throughput Automation of Endosomolytic Polymers for mRNA Delivery. ACS Appl Bio Mater 2021;4:1640-54. [DOI: 10.1021/acsabm.0c01463] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
63 Carrella S, Banfi S, Karali M. Sophisticated Gene Regulation for a Complex Physiological System: The Role of Non-coding RNAs in Photoreceptor Cells. Front Cell Dev Biol 2020;8:629158. [PMID: 33537317 DOI: 10.3389/fcell.2020.629158] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
64 Kubo T, Nishimura Y, Sato Y, Yanagihara K, Seyama T. Sixteen Different Types of Lipid-Conjugated siRNAs Containing Saturated and Unsaturated Fatty Acids and Exhibiting Enhanced RNAi Potency. ACS Chem Biol 2021;16:150-64. [PMID: 33346648 DOI: 10.1021/acschembio.0c00847] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Kis Z, Kontoravdi C, Shattock R, Shah N. Resources, Production Scales and Time Required for Producing RNA Vaccines for the Global Pandemic Demand. Vaccines (Basel) 2020;9:3. [PMID: 33374802 DOI: 10.3390/vaccines9010003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
66 Ofoeyeno N, Ekpenyong E, Braconi C. Pathogenetic Role and Clinical Implications of Regulatory RNAs in Biliary Tract Cancer. Cancers (Basel) 2020;13:E12. [PMID: 33375055 DOI: 10.3390/cancers13010012] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
67 Le TK, Paris C, Khan KS, Robson F, Ng WL, Rocchi P. Nucleic Acid-Based Technologies Targeting Coronaviruses. Trends Biochem Sci 2021;46:351-65. [PMID: 33309323 DOI: 10.1016/j.tibs.2020.11.010] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
68 Roces CB, Lou G, Jain N, Abraham S, Thomas A, Halbert GW, Perrie Y. Manufacturing Considerations for the Development of Lipid Nanoparticles Using Microfluidics. Pharmaceutics 2020;12:E1095. [PMID: 33203082 DOI: 10.3390/pharmaceutics12111095] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
69 Tabatabaeian H, Peiling Yang S, Tay Y. Non-Coding RNAs: Uncharted Mediators of Thyroid Cancer Pathogenesis. Cancers (Basel) 2020;12:E3264. [PMID: 33158279 DOI: 10.3390/cancers12113264] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]