BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dong B, Jaeger AM, Thiele DJ. Inhibiting Heat Shock Factor 1 in Cancer: A Unique Therapeutic Opportunity. Trends Pharmacol Sci 2019;40:986-1005. [PMID: 31727393 DOI: 10.1016/j.tips.2019.10.008] [Cited by in Crossref: 25] [Cited by in F6Publishing: 34] [Article Influence: 8.3] [Reference Citation Analysis]
Number Citing Articles
1 Cugusi S, Bajpe PK, Mitter R, Patel H, Stewart A, Svejstrup JQ. An Important Role for RPRD1B in the Heat Shock Response. Mol Cell Biol 2022;:e0017322. [PMID: 36121223 DOI: 10.1128/mcb.00173-22] [Reference Citation Analysis]
2 Gao X, Fu Y, Sun S, Gu T, Li Y, Sun T, Li H, Du W, Suo C, Li C, Gao Y, Meng Y, Ni Y, Yang S, Lan T, Sai S, Li J, Yu K, Wang P, Ding C. Cryptococcal Hsf3 controls intramitochondrial ROS homeostasis by regulating the respiratory process. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-33168-1] [Reference Citation Analysis]
3 Huang M, Dong W, Xie R, Wu J, Su Q, Li W, Yao K, Chen Y, Zhou Q, Zhang Q, Li W, Cheng L, Peng S, Chen S, Huang J, Chen X, Lin T. HSF1 facilitates the multistep process of lymphatic metastasis in bladder cancer via a novel PRMT5-WDR5-dependent transcriptional program. Cancer Commun (Lond) 2022. [PMID: 35434944 DOI: 10.1002/cac2.12284] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
4 Cyran AM, Zhitkovich A. Heat Shock Proteins and HSF1 in Cancer. Front Oncol 2022;12:860320. [PMID: 35311075 DOI: 10.3389/fonc.2022.860320] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
5 Li Y, Wang D, Ping X, Zhang Y, Zhang T, Wang L, Jin L, Zhao W, Guo M, Shen F, Meng M, Chen X, Zheng Y, Wang J, Li D, Zhang Q, Hu C, Xu L, Ma X. Local hyperthermia therapy induces browning of white fat and treats obesity. Cell 2022;185:949-966.e19. [PMID: 35247329 DOI: 10.1016/j.cell.2022.02.004] [Cited by in Crossref: 7] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
6 Kim SY. Oxidative Stress and Gender Disparity in Cancer. Free Radic Res 2022;:1-39. [PMID: 35118928 DOI: 10.1080/10715762.2022.2038789] [Reference Citation Analysis]
7 Murugan NJ, Voutsadakis IA. Proteasome regulators in pancreatic cancer. World J Gastrointest Oncol 2022; 14(1): 38-54 [DOI: 10.4251/wjgo.v14.i1.38] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Kuo HH, Su ZR, Chuang JY, Yih LH. Heat shock factor 1 suppression induces spindle abnormalities and sensitizes cells to antimitotic drugs. Cell Div 2021;16:8. [PMID: 34922589 DOI: 10.1186/s13008-021-00075-8] [Reference Citation Analysis]
9 Kmiecik SW, Mayer MP. Molecular mechanisms of heat shock factor 1 regulation. Trends Biochem Sci 2021:S0968-0004(21)00230-9. [PMID: 34810080 DOI: 10.1016/j.tibs.2021.10.004] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
10 Cui T, Wang Y, Song P, Yi X, Chen J, Yang Y, Wang H, Kang P, Guo S, Liu L, Li K, Jian Z, Li S, Li C. HSF1-Dependent Autophagy Activation Contributes to the Survival of Melanocytes Under Oxidative Stress in Vitiligo. J Invest Dermatol 2021:S0022-202X(21)02488-X. [PMID: 34780715 DOI: 10.1016/j.jid.2021.11.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
11 Mondal A, Bhattacharya A, Singh V, Pandita S, Bacolla A, Pandita RK, Tainer JA, Ramos KS, Pandita TK, Das C. Stress responses as master keys to epigenomic changes in transcriptome and metabolome for cancer etiology and therapeutics. Mol Cell Biol 2021;:MCB0048321. [PMID: 34748401 DOI: 10.1128/MCB.00483-21] [Reference Citation Analysis]
12 Luthold C, Lambert H, Guilbert SM, Rodrigue MA, Fuchs M, Varlet AA, Fradet-Turcotte A, Lavoie JN. CDK1-Mediated Phosphorylation of BAG3 Promotes Mitotic Cell Shape Remodeling and the Molecular Assembly of Mitotic p62 Bodies. Cells 2021;10:2638. [PMID: 34685619 DOI: 10.3390/cells10102638] [Reference Citation Analysis]
13 Roos-Mattjus P, Sistonen L. Interplay between mammalian heat shock factors 1 and 2 in physiology and pathology. FEBS J 2021. [PMID: 34478606 DOI: 10.1111/febs.16178] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
14 Huang M, Xu MT, Wang GL, Han M, Chen X, Wen JB. Relationship of expression of heat shock transcription factor 1 with sensitivity to radiotherapy and chemotherapy in esophageal squamous cell carcinoma. Shijie Huaren Xiaohua Zazhi 2021; 29(14): 775-787 [DOI: 10.11569/wcjd.v29.i14.775] [Reference Citation Analysis]
15 Zhang B, Fan Y, Cao P, Tan K. Multifaceted roles of HSF1 in cell death: A state-of-the-art review. Biochim Biophys Acta Rev Cancer 2021;1876:188591. [PMID: 34273469 DOI: 10.1016/j.bbcan.2021.188591] [Cited by in F6Publishing: 11] [Reference Citation Analysis]
16 Brown CW, Chhoy P, Mukhopadhyay D, Karner ER, Mercurio AM. Targeting prominin2 transcription to overcome ferroptosis resistance in cancer. EMBO Mol Med 2021;13:e13792. [PMID: 34223704 DOI: 10.15252/emmm.202013792] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
17 Nikotina AD, Vladimirova SA, Komarova EY, Alexeev D, Efremov S, Leonova E, Pavlov R, Kartsev VG, Polonik SG, Margulis BA, Guzhova IV. Prevention of High Glucose-Mediated EMT by Inhibition of Hsp70 Chaperone. Int J Mol Sci 2021;22:6902. [PMID: 34199046 DOI: 10.3390/ijms22136902] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Dong B, Jaeger AM, Hughes PF, Loiselle DR, Hauck JS, Fu Y, Haystead TA, Huang J, Thiele DJ. Targeting therapy-resistant prostate cancer via a direct inhibitor of the human heat shock transcription factor 1. Sci Transl Med 2020;12:eabb5647. [PMID: 33328331 DOI: 10.1126/scitranslmed.abb5647] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
19 Wang Y, Xiu J, Yang T, Ren C, Yu Z. HSF1 promotes endometriosis development and glycolysis by up-regulating PFKFB3 expression. Reprod Biol Endocrinol 2021;19:86. [PMID: 34107992 DOI: 10.1186/s12958-021-00770-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Kim W, Kim SJ. Heat Shock Factor 1 as a Prognostic and Diagnostic Biomarker of Gastric Cancer. Biomedicines 2021;9:586. [PMID: 34064083 DOI: 10.3390/biomedicines9060586] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
21 Kutschat AP, Johnsen SA, Hamdan FH. Store-Operated Calcium Entry: Shaping the Transcriptional and Epigenetic Landscape in Pancreatic Cancer. Cells 2021;10:966. [PMID: 33919156 DOI: 10.3390/cells10050966] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Chen BC, Tu SL, Zheng BA, Dong QJ, Wan ZA, Dai QQ. Schizandrin A exhibits potent anticancer activity in colorectal cancer cells by inhibiting heat shock factor 1. Biosci Rep 2020;40:BSR20200203. [PMID: 32110802 DOI: 10.1042/BSR20200203] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
23 Scutigliani EM, Liang Y, Crezee H, Kanaar R, Krawczyk PM. Modulating the Heat Stress Response to Improve Hyperthermia-Based Anticancer Treatments. Cancers (Basel) 2021;13:1243. [PMID: 33808973 DOI: 10.3390/cancers13061243] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
24 Kabakov AE, Yakimova AO. Hypoxia-Induced Cancer Cell Responses Driving Radioresistance of Hypoxic Tumors: Approaches to Targeting and Radiosensitizing. Cancers (Basel) 2021;13:1102. [PMID: 33806538 DOI: 10.3390/cancers13051102] [Cited by in Crossref: 6] [Cited by in F6Publishing: 20] [Article Influence: 6.0] [Reference Citation Analysis]
25 Silveira MA, Tav C, Bérube-Simard FA, Cuppens T, Leclercq M, Fournier É, Côté MC, Droit A, Bilodeau S. Modulating HSF1 levels impacts expression of the estrogen receptor α and antiestrogen response. Life Sci Alliance 2021;4:e202000811. [PMID: 33593922 DOI: 10.26508/lsa.202000811] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Shen YW, Zhou YD, Chen HZ, Luan X, Zhang WD. Targeting CTGF in Cancer: An Emerging Therapeutic Opportunity. Trends Cancer 2021;7:511-24. [PMID: 33358571 DOI: 10.1016/j.trecan.2020.12.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
27 Poque E, Ruigrok HJ, Arnaud-Cormos D, Habauzit D, Chappe Y, Martin C, De Gannes FP, Hurtier A, Garenne A, Lagroye I, Le Dréan Y, Lévêque P, Percherancier Y. Effects of radiofrequency field exposure on proteotoxic-induced and heat-induced HSF1 response in live cells using the bioluminescence resonance energy transfer technique. Cell Stress Chaperones 2021;26:241-51. [PMID: 33067759 DOI: 10.1007/s12192-020-01172-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
28 Masser AE, Ciccarelli M, Andréasson C. Hsf1 on a leash - controlling the heat shock response by chaperone titration. Exp Cell Res 2020;396:112246. [PMID: 32861670 DOI: 10.1016/j.yexcr.2020.112246] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
29 Wang G, Cao P, Fan Y, Tan K. Emerging roles of HSF1 in cancer: Cellular and molecular episodes. Biochim Biophys Acta Rev Cancer 2020;1874:188390. [PMID: 32653364 DOI: 10.1016/j.bbcan.2020.188390] [Cited by in Crossref: 4] [Cited by in F6Publishing: 16] [Article Influence: 2.0] [Reference Citation Analysis]
30 Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell 2020;38:167-97. [PMID: 32649885 DOI: 10.1016/j.ccell.2020.06.001] [Cited by in Crossref: 140] [Cited by in F6Publishing: 367] [Article Influence: 70.0] [Reference Citation Analysis]
31 Puustinen MC, Sistonen L. Molecular Mechanisms of Heat Shock Factors in Cancer. Cells 2020;9:E1202. [PMID: 32408596 DOI: 10.3390/cells9051202] [Cited by in Crossref: 12] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
32 Cahill CM. Opioid dose regimen shapes mesolimbic adaptations. Neuropsychopharmacology 2020;45:1777-8. [PMID: 32350379 DOI: 10.1038/s41386-020-0679-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
33 Prince TL, Lang BJ, Guerrero-Gimenez ME, Fernandez-Muñoz JM, Ackerman A, Calderwood SK. HSF1: Primary Factor in Molecular Chaperone Expression and a Major Contributor to Cancer Morbidity. Cells 2020;9:E1046. [PMID: 32331382 DOI: 10.3390/cells9041046] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
34 Kabakov A, Yakimova A, Matchuk O. Molecular Chaperones in Cancer Stem Cells: Determinants of Stemness and Potential Targets for Antitumor Therapy. Cells 2020;9:E892. [PMID: 32268506 DOI: 10.3390/cells9040892] [Cited by in Crossref: 17] [Cited by in F6Publishing: 35] [Article Influence: 8.5] [Reference Citation Analysis]