BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhu X, Jiang W, Zhao Y, Liu H, Sun B. Single, dual and multi-emission carbon dots based optosensing for food safety. Trends in Food Science & Technology 2021;111:388-404. [DOI: 10.1016/j.tifs.2021.03.005] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhu X, Yuan X, Han L, Liu H, Sun B. A smartphone-integrated optosensing platform based on red-emission carbon dots for real-time detection of pyrethroids. Biosens Bioelectron 2021;191:113460. [PMID: 34186303 DOI: 10.1016/j.bios.2021.113460] [Reference Citation Analysis]
2 Mei Y, He C, Zeng W, Luo Y, Liu C, Yang M, Kuang Y, Lin X, Huang Q. Electrochemical Biosensors for Foodborne Pathogens Detection Based on Carbon Nanomaterials: Recent Advances and Challenges. Food Bioprocess Technol. [DOI: 10.1007/s11947-022-02759-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
3 Zhang Y, Zhu X, Li M, Liu H, Sun B. Temperature-Responsive Covalent Organic Framework-Encapsulated Carbon Dot-Based Sensing Platform for Pyrethroid Detection via Fluorescence Response and Smartphone Readout. J Agric Food Chem 2022. [PMID: 35543319 DOI: 10.1021/acs.jafc.2c01568] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Han L, Meng C, Zhang D, Liu H, Sun B. Fabrication of a fluorescence probe via molecularly imprinted polymers on carbazole-based covalent organic frameworks for optosensing of ethyl carbamate in fermented alcoholic beverages. Analytica Chimica Acta 2022;1192:339381. [DOI: 10.1016/j.aca.2021.339381] [Reference Citation Analysis]
5 Chen ZJ, Wu HL, Shen YD, Wang H, Zhang YF, Hammock B, Li ZF, Luo L, Lei HT, Xu ZL. Phosphate-triggered ratiometric fluoroimmunoassay based on nanobody-alkaline phosphatase fusion for sensitive detection of 1-naphthol for the exposure assessment of pesticide carbaryl. J Hazard Mater 2022;424:127411. [PMID: 34629198 DOI: 10.1016/j.jhazmat.2021.127411] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
6 Gao X, Sun M, Liu X, Li X, Li J. A ratiometric fluorescence platform based on carbon dots for visual and rapid detection of copper(II) and fluoroquinolones. Mikrochim Acta 2022;189:144. [PMID: 35292904 DOI: 10.1007/s00604-022-05243-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Zhu X, Zhang Y, Han L, Liu H, Sun B. Quantum confined peptide assemblies in a visual photoluminescent hydrogel platform and smartphone-assisted sample-to-answer analyzer for detecting trace pyrethroids. Biosens Bioelectron 2022;210:114265. [PMID: 35447398 DOI: 10.1016/j.bios.2022.114265] [Reference Citation Analysis]
8 Zhu X, Han L, Liu H, Sun B. A smartphone-based ratiometric fluorescent sensing system for on-site detection of pyrethroids by using blue-green dual-emission carbon dots. Food Chemistry 2022;379:132154. [DOI: 10.1016/j.foodchem.2022.132154] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
9 Tong X, Cai G, Zhu Y, Tong C, Wang F, Guo Y, Shi S. Integrating smartphone-assisted ratiometric fluorescent sensors with in situ hydrogel extraction for visual detection of organophosphorus pesticides. New J Chem 2022;46:8195-202. [DOI: 10.1039/d1nj05614j] [Reference Citation Analysis]