BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Abbott RD, Kaplan DL. Strategies for improving the physiological relevance of human engineered tissues. Trends Biotechnol 2015;33:401-7. [PMID: 25937289 DOI: 10.1016/j.tibtech.2015.04.003] [Cited by in Crossref: 52] [Cited by in F6Publishing: 45] [Article Influence: 7.4] [Reference Citation Analysis]
Number Citing Articles
1 Al-Himdani S, Jessop ZM, Al-Sabah A, Combellack E, Ibrahim A, Doak SH, Hart AM, Archer CW, Thornton CA, Whitaker IS. Tissue-Engineered Solutions in Plastic and Reconstructive Surgery: Principles and Practice. Front Surg 2017;4:4. [PMID: 28280722 DOI: 10.3389/fsurg.2017.00004] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 3.8] [Reference Citation Analysis]
2 Jessop Z, Gao N, Manivannan S, Al-sabah A, Whitaker I. 3D bioprinting cartilage. 3D Bioprinting for Reconstructive Surgery. Elsevier; 2018. pp. 277-304. [DOI: 10.1016/b978-0-08-101103-4.00034-x] [Cited by in Crossref: 4] [Article Influence: 1.0] [Reference Citation Analysis]
3 Mannhardt I, Warncke C, Trieu HK, Müller J, Eschenhagen T. Piezo-bending actuators for isometric or auxotonic contraction analysis of engineered heart tissue. J Tissue Eng Regen Med 2019;13:3-11. [PMID: 30334614 DOI: 10.1002/term.2755] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
4 Gundacker C, Ellinger I. The unique applicability of the human placenta to the Adverse Outcome Pathway (AOP) concept: the placenta provides fundamental insights into human organ functions at multiple levels of biological organization. Reprod Toxicol 2020;96:273-81. [PMID: 32768559 DOI: 10.1016/j.reprotox.2020.07.014] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Hardy JG, Khaing ZZ, Xin S, Tien LW, Ghezzi CE, Mouser DJ, Sukhavasi RC, Preda RC, Gil ES, Kaplan DL, Schmidt CE. Into the groove: instructive silk-polypyrrole films with topographical guidance cues direct DRG neurite outgrowth. Journal of Biomaterials Science, Polymer Edition 2015;26:1327-42. [DOI: 10.1080/09205063.2015.1090181] [Cited by in Crossref: 22] [Cited by in F6Publishing: 14] [Article Influence: 3.1] [Reference Citation Analysis]
6 Ravichandran A, Liu Y, Teoh SH. Review: bioreactor design towards generation of relevant engineered tissues: focus on clinical translation. J Tissue Eng Regen Med 2018;12:e7-e22. [PMID: 28374578 DOI: 10.1002/term.2270] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
7 Aljohani W, Ullah MW, Zhang X, Yang G. Bioprinting and its applications in tissue engineering and regenerative medicine. International Journal of Biological Macromolecules 2018;107:261-75. [DOI: 10.1016/j.ijbiomac.2017.08.171] [Cited by in Crossref: 141] [Cited by in F6Publishing: 102] [Article Influence: 35.3] [Reference Citation Analysis]
8 Pillet F, Gibot L, Madi M, Rols MP, Dague E. Importance of endogenous extracellular matrix in biomechanical properties of human skin model. Biofabrication 2017;9:025017. [PMID: 28493850 DOI: 10.1088/1758-5090/aa6ed5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
9 Jessop ZM, Al-Sabah A, Simoes IN, Burnell SEA, Pieper IL, Thornton CA, Whitaker IS. Isolation and characterisation of nasoseptal cartilage stem/progenitor cells and their role in the chondrogenic niche. Stem Cell Res Ther 2020;11:177. [PMID: 32408888 DOI: 10.1186/s13287-020-01663-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Foresti R, Rossi S, Pinelli S, Alinovi R, Barozzi M, Sciancalepore C, Galetti M, Caffarra C, Lagonegro P, Scavia G, Mattarozzi M, Careri M, Macaluso C, Miragoli M, Selleri S. Highly-defined bioprinting of long-term vascularized scaffolds with Bio-Trap: Complex geometry functionalization and process parameters with computer aided tissue engineering. Materialia 2020;9:100560. [DOI: 10.1016/j.mtla.2019.100560] [Cited by in Crossref: 10] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
11 Prince E, Kheiri S, Wang Y, Xu F, Cruickshank J, Topolskaia V, Tao H, Young EWK, McGuigan AP, Cescon DW, Kumacheva E. Microfluidic Arrays of Breast Tumor Spheroids for Drug Screening and Personalized Cancer Therapies. Adv Healthc Mater 2021;:e2101085. [PMID: 34636180 DOI: 10.1002/adhm.202101085] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Mestres G, Perez RA, D’elía NL, Barbe L. Advantages of microfluidic systems for studying cell-biomaterial interactions—focus on bone regeneration applications. Biomed Phys Eng Express 2019;5:032001. [DOI: 10.1088/2057-1976/ab1033] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
13 Abbott RD, Kimmerling EP, Cairns DM, Kaplan DL. Silk as a Biomaterial to Support Long-Term Three-Dimensional Tissue Cultures. ACS Appl Mater Interfaces 2016;8:21861-8. [PMID: 26849288 DOI: 10.1021/acsami.5b12114] [Cited by in Crossref: 60] [Cited by in F6Publishing: 53] [Article Influence: 10.0] [Reference Citation Analysis]
14 Oono M, Yamaguchi K, Rasyid A, Takano A, Tanaka M, Futai N. Reconfigurable microfluidic device with discretized sidewall. Biomicrofluidics 2017;11:034103. [PMID: 28503247 DOI: 10.1063/1.4983148] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Carvalho MR, Reis RL, Oliveira JM. Mimicking the 3D biology of osteochondral tissue with microfluidic-based solutions: breakthroughs towards boosting drug testing and discovery. Drug Discov Today 2018;23:711-8. [PMID: 29337200 DOI: 10.1016/j.drudis.2018.01.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 2.8] [Reference Citation Analysis]
16 Booij TH, Price LS, Danen EHJ. 3D Cell-Based Assays for Drug Screens: Challenges in Imaging, Image Analysis, and High-Content Analysis. SLAS Discov 2019;24:615-27. [PMID: 30817892 DOI: 10.1177/2472555219830087] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 7.0] [Reference Citation Analysis]
17 Djeljadini S, Lohaus T, Gausmann M, Rauer S, Kather M, Krause B, Pich A, Möller M, Wessling M. Trypsin-Free Cultivation of 3D Mini-Tissues in an Adaptive Membrane Bioreactor. Adv Biosyst 2020;4:e2000081. [PMID: 33089652 DOI: 10.1002/adbi.202000081] [Reference Citation Analysis]
18 Park H, Lim DJ, Sung M, Lee SH, Na D, Park H. Microengineered platforms for co-cultured mesenchymal stem cells towards vascularized bone tissue engineering. Tissue Eng Regen Med 2016;13:465-74. [PMID: 30603428 DOI: 10.1007/s13770-016-9080-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
19 Magno V, Meinhardt A, Werner C. Polymer Hydrogels to Guide Organotypic and Organoid Cultures. Adv Funct Mater 2020;30:2000097. [DOI: 10.1002/adfm.202000097] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
20 Abbott RD, Borowsky FE, Quinn KP, Bernstein DL, Georgakoudi I, Kaplan DL. Non-invasive Assessments of Adipose Tissue Metabolism In Vitro. Ann Biomed Eng 2016;44:725-32. [PMID: 26399988 DOI: 10.1007/s10439-015-1438-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
21 Chen W, Liu X, Chen Q, Bao C, Zhao L, Zhu Z, Xu HHK. Angiogenic and osteogenic regeneration in rats via calcium phosphate scaffold and endothelial cell co-culture with human bone marrow mesenchymal stem cells (MSCs), human umbilical cord MSCs, human induced pluripotent stem cell-derived MSCs and human embryonic stem cell-derived MSCs. J Tissue Eng Regen Med 2018;12:191-203. [PMID: 28098961 DOI: 10.1002/term.2395] [Cited by in Crossref: 32] [Cited by in F6Publishing: 27] [Article Influence: 6.4] [Reference Citation Analysis]
22 Pupovac A, Senturk B, Griffoni C, Maniura-weber K, Rottmar M, Mcarthur SL. Toward Immunocompetent 3D Skin Models. Adv Healthcare Mater 2018;7:1701405. [DOI: 10.1002/adhm.201701405] [Cited by in Crossref: 24] [Cited by in F6Publishing: 19] [Article Influence: 6.0] [Reference Citation Analysis]
23 Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H. Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity. Adv Healthc Mater 2016;5:326-33. [PMID: 26626828 DOI: 10.1002/adhm.201500677] [Cited by in Crossref: 320] [Cited by in F6Publishing: 273] [Article Influence: 45.7] [Reference Citation Analysis]
24 van den Broek LJ, Bergers LIJC, Reijnders CMA, Gibbs S. Progress and Future Prospectives in Skin-on-Chip Development with Emphasis on the use of Different Cell Types and Technical Challenges. Stem Cell Rev Rep 2017;13:418-29. [PMID: 28536890 DOI: 10.1007/s12015-017-9737-1] [Cited by in Crossref: 50] [Cited by in F6Publishing: 43] [Article Influence: 12.5] [Reference Citation Analysis]
25 García-Posadas L, Diebold Y. Three-Dimensional Human Cell Culture Models to Study the Pathophysiology of the Anterior Eye. Pharmaceutics 2020;12:E1215. [PMID: 33333869 DOI: 10.3390/pharmaceutics12121215] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
26 Ahadian S, Civitarese R, Bannerman D, Mohammadi MH, Lu R, Wang E, Davenport-Huyer L, Lai B, Zhang B, Zhao Y, Mandla S, Korolj A, Radisic M. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Adv Healthc Mater 2018;7. [PMID: 29034591 DOI: 10.1002/adhm.201700506] [Cited by in Crossref: 121] [Cited by in F6Publishing: 90] [Article Influence: 24.2] [Reference Citation Analysis]
27 Sensi F, D'Angelo E, D'Aronco S, Molinaro R, Agostini M. Preclinical three-dimensional colorectal cancer model: The next generation of in vitro drug efficacy evaluation. J Cell Physiol 2018;234:181-91. [PMID: 30277557 DOI: 10.1002/jcp.26812] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
28 Iordache F, Constantinescu A, Andrei E, Amuzescu B, Halitzchi F, Savu L, Maniu H. Electrophysiology, immunophenotype, and gene expression characterization of senescent and cryopreserved human amniotic fluid stem cells. J Physiol Sci 2016;66:463-76. [PMID: 27053101 DOI: 10.1007/s12576-016-0441-8] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
29 Aufderheide M, Förster C, Beschay M, Branscheid D, Emura M. A new computer-controlled air-liquid interface cultivation system for the generation of differentiated cell cultures of the airway epithelium. Exp Toxicol Pathol 2016;68:77-87. [PMID: 26507834 DOI: 10.1016/j.etp.2015.10.001] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 3.4] [Reference Citation Analysis]
30 Dhiman N, Shagaghi N, Bhave M, Sumer H, Kingshott P, Rath SN. Indirect co-culture of lung carcinoma cells with hyperthermia-treated mesenchymal stem cells influences tumor spheroid growth in a collagen-based 3-dimensional microfluidic model. Cytotherapy 2021;23:25-36. [PMID: 32771259 DOI: 10.1016/j.jcyt.2020.07.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Rodil A, Laca A, Paredes B, Rendueles M, Meana Á, Díaz M. Gels prepared from egg yolk and its fractions for tissue engineering. Biotechnol Prog 2016;32:1577-83. [PMID: 27602804 DOI: 10.1002/btpr.2364] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
32 Ng WL, Wang S, Yeong WY, Naing MW. Skin Bioprinting: Impending Reality or Fantasy? Trends in Biotechnology 2016;34:689-99. [DOI: 10.1016/j.tibtech.2016.04.006] [Cited by in Crossref: 128] [Cited by in F6Publishing: 111] [Article Influence: 21.3] [Reference Citation Analysis]
33 Meinert C, Theodoropoulos C, Klein TJ, Hutmacher DW, Loessner D. A Method for Prostate and Breast Cancer Cell Spheroid Cultures Using Gelatin Methacryloyl-Based Hydrogels. Methods Mol Biol 2018;1786:175-94. [PMID: 29786793 DOI: 10.1007/978-1-4939-7845-8_10] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
34 Shi D, Mi G, Wang M, Webster TJ. In vitro and ex vivo systems at the forefront of infection modeling and drug discovery. Biomaterials 2019;198:228-49. [PMID: 30384974 DOI: 10.1016/j.biomaterials.2018.10.030] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
35 Kim HJ, Oh DX, Choy S, Nguyen H, Cha HJ, Hwang DS. 3D cellulose nanofiber scaffold with homogeneous cell population and long-term proliferation. Cellulose 2018;25:7299-314. [DOI: 10.1007/s10570-018-2058-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
36 Komeya M, Kimura H, Nakamura H, Yokonishi T, Sato T, Kojima K, Hayashi K, Katagiri K, Yamanaka H, Sanjo H, Yao M, Kamimura S, Inoue K, Ogonuki N, Ogura A, Fujii T, Ogawa T. Long-term ex vivo maintenance of testis tissues producing fertile sperm in a microfluidic device. Sci Rep. 2016;6:21472. [PMID: 26892171 DOI: 10.1038/srep21472] [Cited by in Crossref: 88] [Cited by in F6Publishing: 78] [Article Influence: 14.7] [Reference Citation Analysis]
37 Conzatti G, Cavalie S, Combes C, Torrisani J, Carrere N, Tourrette A. PNIPAM grafted surfaces through ATRP and RAFT polymerization: Chemistry and bioadhesion. Colloids and Surfaces B: Biointerfaces 2017;151:143-55. [DOI: 10.1016/j.colsurfb.2016.12.007] [Cited by in Crossref: 37] [Cited by in F6Publishing: 25] [Article Influence: 7.4] [Reference Citation Analysis]
38 Thélu A, Catoire S, Kerdine-römer S. Immune-competent in vitro co-culture models as an approach for skin sensitisation assessment. Toxicology in Vitro 2020;62:104691. [DOI: 10.1016/j.tiv.2019.104691] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
39 Nie J, Gao Q, Wang Y, Zeng J, Zhao H, Sun Y, Shen J, Ramezani H, Fu Z, Liu Z, Xiang M, Fu J, Zhao P, Chen W, He Y. Vessel-on-a-chip with Hydrogel-based Microfluidics. Small 2018;14:1802368. [DOI: 10.1002/smll.201802368] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 12.8] [Reference Citation Analysis]
40 Hu Q, Tang H, Yao Y, Liu S, Zhang H, Ramalingam M. Rapid fabrication of gelatin-based scaffolds with prevascularized channels for organ regeneration. Biomed Mater 2021. [PMID: 33730706 DOI: 10.1088/1748-605X/abef7b] [Reference Citation Analysis]
41 Barbosa MAG, Xavier CPR, Pereira RF, Petrikaitė V, Vasconcelos MH. 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs. Cancers (Basel) 2021;14:190. [PMID: 35008353 DOI: 10.3390/cancers14010190] [Reference Citation Analysis]
42 Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A 2016;113:3179-84. [PMID: 26951646 DOI: 10.1073/pnas.1521342113] [Cited by in Crossref: 772] [Cited by in F6Publishing: 665] [Article Influence: 128.7] [Reference Citation Analysis]
43 Cutarelli A, Ghio S, Zasso J, Speccher A, Scarduelli G, Roccuzzo M, Crivellari M, Maria Pugno N, Casarosa S, Boscardin M, Conti L. Vertically-Aligned Functionalized Silicon Micropillars for 3D Culture of Human Pluripotent Stem Cell-Derived Cortical Progenitors. Cells 2019;9:E88. [PMID: 31905823 DOI: 10.3390/cells9010088] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
44 Kadekar S, Barbe L, Stoddart M, Varghese OP, Tenje M, Mestres G. Effect of the Addition Frequency of 5-Azacytidine in Both Micro- and Macroscale Cultures. Cell Mol Bioeng 2021;14:121-30. [PMID: 33633814 DOI: 10.1007/s12195-020-00654-9] [Reference Citation Analysis]
45 Picollet-d’hahan N, Dolega ME, Liguori L, Marquette C, Le Gac S, Gidrol X, Martin DK. A 3D Toolbox to Enhance Physiological Relevance of Human Tissue Models. Trends in Biotechnology 2016;34:757-69. [DOI: 10.1016/j.tibtech.2016.06.012] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 6.3] [Reference Citation Analysis]
46 Yang X, Sun Z, Gao J, Yang C, Tang D. Plasma-initiated polymerization of N-isopropylacrylamide and functionalized with dopamine for the adhesion to Hela cells. Polym Bull 2020;77:963-74. [DOI: 10.1007/s00289-019-02784-1] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
47 Bale SS, Borenstein JT. Microfluidic Cell Culture Platforms to Capture Hepatic Physiology and Complex Cellular Interactions. Drug Metab Dispos 2018;46:1638-46. [DOI: 10.1124/dmd.118.083055] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]