BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Cuenda A, Sanz-Ezquerro JJ. p38γ and p38δ: From Spectators to Key Physiological Players. Trends Biochem Sci 2017;42:431-42. [PMID: 28473179 DOI: 10.1016/j.tibs.2017.02.008] [Cited by in Crossref: 28] [Cited by in F6Publishing: 40] [Article Influence: 5.6] [Reference Citation Analysis]
Number Citing Articles
1 Escós A, Martín-Gómez J, González-Romero D, Díaz-Mora E, Francisco-Velilla R, Santiago C, Cuezva JM, Domínguez-Zorita S, Martínez-Salas E, Sonenberg N, Sanz-Ezquerro JJ, Jafarnejad SM, Cuenda A. TPL2 kinase expression is regulated by the p38γ/p38δ-dependent association of aconitase-1 with TPL2 mRNA. Proc Natl Acad Sci U S A 2022;119:e2204752119. [PMID: 35994673 DOI: 10.1073/pnas.2204752119] [Reference Citation Analysis]
2 Fajardo P, Taskova M, Martín-Serrano MA, Hansen J, Slott S, Jakobsen AK, Wibom ML, Salegi B, Muñoz A, Barbachano A, Sharma A, Gubatan JM, Habtezion A, Sanz-Ezquerro JJ, Astakhova K, Cuenda A. p38γ and p38δ as biomarkers in the interplay of colon cancer and inflammatory bowel diseases. Cancer Commun (Lond) 2022. [PMID: 35796643 DOI: 10.1002/cac2.12331] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Chu Q, Li J, Chen J, Yuan Z. HBV induced the discharge of intrinsic antiviral miRNAs in HBV-replicating hepatocytes via extracellular vesicles to facilitate its replication. J Gen Virol 2022;103. [PMID: 35604380 DOI: 10.1099/jgv.0.001744] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
4 Zeyen L, Seternes OM, Mikkola I. Crosstalk between p38 MAPK and GR Signaling. Int J Mol Sci 2022;23:3322. [PMID: 35328742 DOI: 10.3390/ijms23063322] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Yin DP, Zheng YF, Sun P, Yao MY, Xie LX, Dou XW, Tian Y, Liu JS. The pro-tumorigenic activity of p38γ overexpression in nasopharyngeal carcinoma. Cell Death Dis 2022;13:210. [PMID: 35246508 DOI: 10.1038/s41419-022-04637-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Díaz-Chamorro S, Garrido-Jiménez S, Barrera-López JF, Mateos-Quirós CM, Cumplido-Laso G, Lorenzo MJ, Román ÁC, Bernardo E, Sabio G, Carvajal-González JM, Centeno F. Title: p38δ Regulates IL6 Expression Modulating ERK Phosphorylation in Preadipocytes. Front Cell Dev Biol 2021;9:708844. [PMID: 35111744 DOI: 10.3389/fcell.2021.708844] [Reference Citation Analysis]
7 García-Hernández L, García-Ortega MB, Ruiz-Alcalá G, Carrillo E, Marchal JA, García MÁ. The p38 MAPK Components and Modulators as Biomarkers and Molecular Targets in Cancer. Int J Mol Sci 2021;23:370. [PMID: 35008796 DOI: 10.3390/ijms23010370] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Zhao X, Jin X, Zhang Q, Liu R, Luo H, Yang Z, Geng Y, Feng S, Li C, Wang L, Wang X, Li Q. Silencing of the lncRNA H19 enhances sensitivity to X-ray and carbon-ions through the miR-130a-3p /WNK3 signaling axis in NSCLC cells. Cancer Cell Int 2021;21:644. [PMID: 34863180 DOI: 10.1186/s12935-021-02268-1] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
9 Wang S, Wang A, Zhang Y, Zhu K, Wang X, Chen Y, Wu J. The role of MAPK11/12/13/14 (p38 MAPK) protein in dopamine agonist-resistant prolactinomas. BMC Endocr Disord 2021;21:235. [PMID: 34814904 DOI: 10.1186/s12902-021-00900-9] [Reference Citation Analysis]
10 Hu S, Yao Y, Wei ZY, Wang SX, Wu YC, Hu Y, Yang CC, Min JL, Li LY, Zhou H, Yang JF, Li J, Xu T. Deletion of p38γ attenuates ethanol consumption- and acetaminophen-induced liver injury in mice through promoting Dlg1. Acta Pharmacol Sin 2021. [PMID: 34789918 DOI: 10.1038/s41401-021-00795-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Morgan D, Berggren KL, Spiess CD, Smith HM, Tejwani A, Weir SJ, Lominska CE, Thomas SM, Gan GN. Mitogen-activated protein kinase-activated protein kinase-2 (MK2) and its role in cell survival, inflammatory signaling, and migration in promoting cancer. Mol Carcinog 2021. [PMID: 34559922 DOI: 10.1002/mc.23348] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Wu F, Sun D, Liao Y, Shang K, Lu C. RPL35A is a key promotor involved in the development and progression of gastric cancer. Cancer Cell Int 2021;21:497. [PMID: 34535139 DOI: 10.1186/s12935-021-02199-x] [Reference Citation Analysis]
13 Machado TR, Machado TR, Pascutti PG. The p38 MAPK Inhibitors and Their Role in Inflammatory Diseases. ChemistrySelect 2021;6:5729-42. [DOI: 10.1002/slct.202100406] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Kasuya Y, Kim JD, Hatano M, Tatsumi K, Matsuda S. Pathophysiological Roles of Stress-Activated Protein Kinases in Pulmonary Fibrosis. Int J Mol Sci 2021;22:6041. [PMID: 34204949 DOI: 10.3390/ijms22116041] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
15 Moreira J, Costelha S, Saraiva M, Saraiva MJ. The Expression of Chemokines Is Downregulated in a Pre-Clinical Model of TTR V30M Amyloidosis. Front Immunol 2021;12:650269. [PMID: 34093538 DOI: 10.3389/fimmu.2021.650269] [Reference Citation Analysis]
16 Anton DB, Ducati RG, Timmers LFSM, Laufer S, Goettert MI. A Special View of What Was Almost Forgotten: p38δ MAPK. Cancers (Basel) 2021;13:2077. [PMID: 33923030 DOI: 10.3390/cancers13092077] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
17 Burton JC, Antoniades W, Okalova J, Roos MM, Grimsey NJ. Atypical p38 Signaling, Activation, and Implications for Disease. Int J Mol Sci 2021;22:4183. [PMID: 33920735 DOI: 10.3390/ijms22084183] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
18 Zhang P, Yuan X, Yu T, Huang H, Yang C, Zhang L, Yang S, Luo X, Luo J. Lycorine inhibits cell proliferation, migration and invasion, and primarily exerts in vitro cytostatic effects in human colorectal cancer via activating the ROS/p38 and AKT signaling pathways. Oncol Rep 2021;45:19. [PMID: 33649853 DOI: 10.3892/or.2021.7970] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
19 Canovas B, Nebreda AR. Diversity and versatility of p38 kinase signalling in health and disease. Nat Rev Mol Cell Biol 2021;22:346-66. [PMID: 33504982 DOI: 10.1038/s41580-020-00322-w] [Cited by in Crossref: 20] [Cited by in F6Publishing: 66] [Article Influence: 20.0] [Reference Citation Analysis]
20 Sanz-Ezquerro JJ, Cuenda A. p38 Signalling Pathway. Int J Mol Sci 2021;22:1003. [PMID: 33498296 DOI: 10.3390/ijms22031003] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
21 Zongdan J, Yuyu L, Zhibing W, Chao L, Zhenyu Z, Weihao S. The mechanism of miR-363-3p/DUSP10 signaling pathway involved in the gastric mucosal injury induced by clopidogrel. Toxicol Mech Methods 2021;31:150-8. [PMID: 33208005 DOI: 10.1080/15376516.2020.1850960] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Cheng Y, Sun F, Wang L, Gao M, Xie Y, Sun Y, Liu H, Yuan Y, Yi W, Huang Z, Yan H, Peng K, Wu Y, Cao Z. Virus-induced p38 MAPK activation facilitates viral infection. Theranostics 2020;10:12223-40. [PMID: 33204339 DOI: 10.7150/thno.50992] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 11.0] [Reference Citation Analysis]
23 Roche O, Fernández-Aroca DM, Arconada-Luque E, García-Flores N, Mellor LF, Ruiz-Hidalgo MJ, Sánchez-Prieto R. p38β and Cancer: The Beginning of the Road. Int J Mol Sci 2020;21:E7524. [PMID: 33053909 DOI: 10.3390/ijms21207524] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
24 Shi C, Cheng WN, Wang Y, Li DZ, Zhou LN, Zhu YC, Zhou XZ. p38γ overexpression promotes osteosarcoma cell progression. Aging (Albany NY) 2020;12:18384-95. [PMID: 32970611 DOI: 10.18632/aging.103708] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
25 George SA, Kiss A, Obaid SN, Venegas A, Talapatra T, Wei C, Efimova T, Efimov IR. p38δ genetic ablation protects female mice from anthracycline cardiotoxicity. Am J Physiol Heart Circ Physiol 2020;319:H775-86. [PMID: 32822209 DOI: 10.1152/ajpheart.00415.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
26 Germann UA, Alam JJ. P38α MAPK Signaling-A Robust Therapeutic Target for Rab5-Mediated Neurodegenerative Disease. Int J Mol Sci 2020;21:E5485. [PMID: 32751991 DOI: 10.3390/ijms21155485] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
27 Mai L, Zhu X, Huang F, He H, Fan W. p38 mitogen-activated protein kinase and pain. Life Sci 2020;256:117885. [PMID: 32485175 DOI: 10.1016/j.lfs.2020.117885] [Cited by in Crossref: 12] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
28 Guo Y, Wang M, Ge J, Niu W, Chen M, Cheng W, Lei B. Bioactive biodegradable polycitrate nanoclusters enhances the myoblast differentiation and in vivo skeletal muscle regeneration via p38 MAPK signaling pathway. Bioact Mater 2020;5:486-95. [PMID: 32322759 DOI: 10.1016/j.bioactmat.2020.04.004] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 4.5] [Reference Citation Analysis]
29 Barrio L, Román-García S, Díaz-Mora E, Risco A, Jiménez-Saiz R, Carrasco YR, Cuenda A. B Cell Development and T-Dependent Antibody Response Are Regulated by p38γ and p38δ. Front Cell Dev Biol 2020;8:189. [PMID: 32266269 DOI: 10.3389/fcell.2020.00189] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
30 Martínez-Limón A, Joaquin M, Caballero M, Posas F, de Nadal E. The p38 Pathway: From Biology to Cancer Therapy. Int J Mol Sci 2020;21:E1913. [PMID: 32168915 DOI: 10.3390/ijms21061913] [Cited by in Crossref: 45] [Cited by in F6Publishing: 91] [Article Influence: 22.5] [Reference Citation Analysis]
31 Troelsen NS, Shanina E, Gonzalez-Romero D, Danková D, Jensen ISA, Śniady KJ, Nami F, Zhang H, Rademacher C, Cuenda A, Gotfredsen CH, Clausen MH. The 3F Library: Fluorinated Fsp3 -Rich Fragments for Expeditious 19 F NMR Based Screening. Angew Chem Int Ed Engl 2020;59:2204-10. [PMID: 31724281 DOI: 10.1002/anie.201913125] [Cited by in Crossref: 21] [Cited by in F6Publishing: 32] [Article Influence: 7.0] [Reference Citation Analysis]
32 Troelsen NS, Shanina E, Gonzalez‐romero D, Danková D, Jensen ISA, Śniady KJ, Nami F, Zhang H, Rademacher C, Cuenda A, Gotfredsen CH, Clausen MH. The 3F Library: Fluorinated Fsp 3 ‐Rich Fragments for Expeditious 19 F NMR Based Screening. Angew Chem 2019;132:2224-30. [DOI: 10.1002/ange.201913125] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
33 Stramucci L, Pranteda A, Stravato A, Amoreo CA, Pennetti A, Diodoro MG, Bartolazzi A, Milella M, Bossi G. MKK3 sustains cell proliferation and survival through p38DELTA MAPK activation in colorectal cancer. Cell Death Dis 2019;10:842. [PMID: 31695024 DOI: 10.1038/s41419-019-2083-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
34 Wu VT, Kiriazov B, Koch KE, Gu VW, Beck AC, Borcherding N, Li T, Addo P, Wehrspan ZJ, Zhang W, Braun TA, Brown BJ, Band V, Band H, Kulak MV, Weigel RJ. A TFAP2C Gene Signature Is Predictive of Outcome in HER2-Positive Breast Cancer. Mol Cancer Res 2020;18:46-56. [PMID: 31619506 DOI: 10.1158/1541-7786.MCR-19-0359] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
35 Lu N, Malemud CJ. Extracellular Signal-Regulated Kinase: A Regulator of Cell Growth, Inflammation, Chondrocyte and Bone Cell Receptor-Mediated Gene Expression. Int J Mol Sci. 2019;20. [PMID: 31382554 DOI: 10.3390/ijms20153792] [Cited by in Crossref: 23] [Cited by in F6Publishing: 49] [Article Influence: 7.7] [Reference Citation Analysis]
36 Alsina-Beauchamp D, Escós A, Fajardo P, González-Romero D, Díaz-Mora E, Risco A, Martín-Serrano MA, Del Fresno C, Dominguez-Andrés J, Aparicio N, Zur R, Shpiro N, Brown GD, Ardavín C, Netea MG, Alemany S, Sanz-Ezquerro JJ, Cuenda A. Myeloid cell deficiency of p38γ/p38δ protects against candidiasis and regulates antifungal immunity. EMBO Mol Med 2018;10:e8485. [PMID: 29661910 DOI: 10.15252/emmm.201708485] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
37 Gessi S, Merighi S, Bencivenni S, Battistello E, Vincenzi F, Setti S, Cadossi M, Borea PA, Cadossi R, Varani K. Pulsed electromagnetic field and relief of hypoxia-induced neuronal cell death: The signaling pathway. J Cell Physiol 2019. [PMID: 30656694 DOI: 10.1002/jcp.28149] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 5.0] [Reference Citation Analysis]
38 Stefanoska K, Bertz J, Volkerling AM, van der Hoven J, Ittner LM, Ittner A. Neuronal MAP kinase p38α inhibits c-Jun N-terminal kinase to modulate anxiety-related behaviour. Sci Rep 2018;8:14296. [PMID: 30250211 DOI: 10.1038/s41598-018-32592-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
39 Stramucci L, Pranteda A, Bossi G. Insights of Crosstalk between p53 Protein and the MKK3/MKK6/p38 MAPK Signaling Pathway in Cancer. Cancers (Basel) 2018;10:E131. [PMID: 29751559 DOI: 10.3390/cancers10050131] [Cited by in Crossref: 54] [Cited by in F6Publishing: 50] [Article Influence: 13.5] [Reference Citation Analysis]
40 Risco A, Martin-Serrano MA, Barber DF, Cuenda A. p38γ and p38δ Are Involved in T Lymphocyte Development. Front Immunol 2018;9:65. [PMID: 29434594 DOI: 10.3389/fimmu.2018.00065] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]