BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 2014;39:199-218. [PMID: 24647116 DOI: 10.1016/j.tibs.2014.02.002] [Cited by in Crossref: 1001] [Cited by in F6Publishing: 956] [Article Influence: 125.1] [Reference Citation Analysis]
Number Citing Articles
1 Meher A. Role of Transcription Factors in the Management of Preterm Birth: Impact on Future Treatment Strategies. Reprod Sci 2022. [PMID: 36131222 DOI: 10.1007/s43032-022-01087-7] [Reference Citation Analysis]
2 Crisman E, Duarte P, Dauden E, Cuadrado A, Rodríguez-Franco MI, López MG, León R. KEAP1-NRF2 protein-protein interaction inhibitors: Design, pharmacological properties and therapeutic potential. Med Res Rev 2022. [PMID: 36086898 DOI: 10.1002/med.21925] [Reference Citation Analysis]
3 Kojima H, Kadono K, Hirao H, Dery KJ, Kupiec-Weglinski JW. CD4+ T cell NRF2 signaling improves liver transplantation outcomes by modulating T cell activation and differentiation. Antioxid Redox Signal 2022. [PMID: 36070449 DOI: 10.1089/ars.2022.0094] [Reference Citation Analysis]
4 Ishii T, Warabi E, Mann GE. Mechanisms underlying Nrf2 nuclear translocation by non-lethal levels of hydrogen peroxide: p38 MAPK-dependent neutral sphingomyelinase2 membrane trafficking and ceramide/PKCζ/CK2 signaling. Free Radic Biol Med 2022:S0891-5849(22)00564-0. [PMID: 36064071 DOI: 10.1016/j.freeradbiomed.2022.08.036] [Reference Citation Analysis]
5 Wang Y, Zhang Z, Sun W, Zhang J, Xu Q, Zhou X, Mao L. Ferroptosis in colorectal cancer: Potential mechanisms and effective therapeutic targets. Biomedicine & Pharmacotherapy 2022;153:113524. [DOI: 10.1016/j.biopha.2022.113524] [Reference Citation Analysis]
6 Wang Y, Wei J, Deng H, Zheng L, Yang H, Lv X. The Role of Nrf2 in Pulmonary Fibrosis: Molecular Mechanisms and Treatment Approaches. Antioxidants 2022;11:1685. [DOI: 10.3390/antiox11091685] [Reference Citation Analysis]
7 Michel-flutot P, Efthimiadi L, Djerbal L, Deramaudt TB, Bonay M, Vinit S. AMPK-Nrf2 Signaling Pathway in Phrenic Motoneurons following Cervical Spinal Cord Injury. Antioxidants 2022;11:1665. [DOI: 10.3390/antiox11091665] [Reference Citation Analysis]
8 Ruberto AA, Maher SP, Vantaux A, Joyner CJ, Bourke C, Balan B, Jex A, Mueller I, Witkowski B, Kyle DE. Single-cell RNA profiling of Plasmodium vivax-infected hepatocytes reveals parasite- and host- specific transcriptomic signatures and therapeutic targets. Front Cell Infect Microbiol 2022;12:986314. [DOI: 10.3389/fcimb.2022.986314] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Li J, Tang X, Wen X, Ren X, Zhang H, Du Y, Lu J. Mitochondrial Glrx2 Knockout Augments Acetaminophen-Induced Hepatotoxicity in Mice. Antioxidants 2022;11:1643. [DOI: 10.3390/antiox11091643] [Reference Citation Analysis]
10 Liu C, Boeren S, Miro Estruch I, Rietjens IMCM. The Gut Microbial Metabolite Pyrogallol Is a More Potent Inducer of Nrf2-Associated Gene Expression Than Its Parent Compound Green Tea (-)-Epigallocatechin Gallate. Nutrients 2022;14:3392. [DOI: 10.3390/nu14163392] [Reference Citation Analysis]
11 Lu Q, Gouda NA, Quan G, Nada H, Elkamhawy A, Lee D, Lee CH, Cho J, Lee K. Novel cudraisoflavone J derivatives as potent neuroprotective agents for the treatment of Parkinson's disease via the activation of Nrf2/HO-1 signaling. Eur J Med Chem 2022;242:114692. [PMID: 36029560 DOI: 10.1016/j.ejmech.2022.114692] [Reference Citation Analysis]
12 Manda G, Milanesi E, Genc S, Niculite CM, Neagoe IV, Tastan B, Dragnea EM, Cuadrado A. Pros and cons of NRF2 activation as adjunctive therapy in rheumatoid arthritis. Free Radic Biol Med 2022;190:179-201. [PMID: 35964840 DOI: 10.1016/j.freeradbiomed.2022.08.012] [Reference Citation Analysis]
13 Wang L, He C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front Immunol 2022;13:967193. [DOI: 10.3389/fimmu.2022.967193] [Reference Citation Analysis]
14 De Backer J, Maric D, Zuhra K, Bogaerts A, Szabo C, Vanden Berghe W, Hoogewijs D. Cytoglobin Silencing Promotes Melanoma Malignancy but Sensitizes for Ferroptosis and Pyroptosis Therapy Response. Antioxidants 2022;11:1548. [DOI: 10.3390/antiox11081548] [Reference Citation Analysis]
15 Livingstone TL, Saha S, Bernuzzi F, Savva GM, Troncoso-rey P, Traka MH, Mills RD, Ball RY, Mithen RF. Accumulation of Sulforaphane and Alliin in Human Prostate Tissue. Nutrients 2022;14:3263. [DOI: 10.3390/nu14163263] [Reference Citation Analysis]
16 Mak KK, Shiming Z, Low JS, Balijepalli MK, Sakirolla R, Dinkova-Kostova AT, Epemolu O, Mohd Z, Pichika MR. Anti-Inflammatory Effects of Auranamide and Patriscabratine-Mechanisms and In Silico Studies. Molecules 2022;27:4992. [PMID: 35956947 DOI: 10.3390/molecules27154992] [Reference Citation Analysis]
17 Panieri E, Pinho SA, Afonso GJM, Oliveira PJ, Cunha-oliveira T, Saso L. NRF2 and Mitochondrial Function in Cancer and Cancer Stem Cells. Cells 2022;11:2401. [DOI: 10.3390/cells11152401] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Esteras N, Abramov AY. Nrf2 as a regulator of mitochondrial function: Energy metabolism and beyond. Free Radic Biol Med 2022:S0891-5849(22)00496-8. [PMID: 35918014 DOI: 10.1016/j.freeradbiomed.2022.07.013] [Reference Citation Analysis]
19 Petsouki E, Cabrera SNS, Heiss EH. AMPK and NRF2: Interactive players in the same team for cellular homeostasis? Free Radic Biol Med 2022:S0891-5849(22)00497-X. [PMID: 35918013 DOI: 10.1016/j.freeradbiomed.2022.07.014] [Reference Citation Analysis]
20 Khodakarami A, Adibfar S, Karpisheh V, Abolhasani S, Jalali P, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The molecular biology and therapeutic potential of Nrf2 in leukemia. Cancer Cell Int 2022;22:241. [PMID: 35906617 DOI: 10.1186/s12935-022-02660-5] [Reference Citation Analysis]
21 Vazifeh S, Kananpour P, Khalilpour M, Eisalou SV, Hamblin MR, Husain K. Anti-inflammatory and Immunomodulatory Properties of Lepidium sativum. BioMed Research International 2022;2022:1-12. [DOI: 10.1155/2022/3645038] [Reference Citation Analysis]
22 Ferrer JLM, Garcia RL. Antioxidant Systems, lncRNAs, and Tunneling Nanotubes in Cell Death Rescue from Cigarette Smoke Exposure. Cells 2022;11:2277. [DOI: 10.3390/cells11152277] [Reference Citation Analysis]
23 Koskela A, Manai F, Basagni F, Liukkonen M, Rosini M, Govoni S, Monte MD, Smedowski A, Kaarniranta K, Amadio M. Nature-Inspired Hybrids (NIH) Improve Proteostasis by Activating Nrf2-Mediated Protective Pathways in Retinal Pigment Epithelial Cells. Antioxidants 2022;11:1385. [DOI: 10.3390/antiox11071385] [Reference Citation Analysis]
24 Kim DE, Byeon HE, Kim DH, Kim SG, Yim H. Plk2-mediated phosphorylation and translocalization of Nrf2 activates anti-inflammation through p53/Plk2/p21cip1 signaling in acute kidney injury. Cell Biol Toxicol 2022. [PMID: 35842499 DOI: 10.1007/s10565-022-09741-1] [Reference Citation Analysis]
25 De Backer J, Lin A, Berghe WV, Bogaerts A, Hoogewijs D. Cytoglobin inhibits non-thermal plasma-induced apoptosis in melanoma cells through regulation of the NRF2-mediated antioxidant response. Redox Biol 2022;55:102399. [PMID: 35850009 DOI: 10.1016/j.redox.2022.102399] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Aoyama K, Itokawa N, Oshima M, Iwama A. Epigenetic Memories in Hematopoietic Stem and Progenitor Cells. Cells 2022;11:2187. [DOI: 10.3390/cells11142187] [Reference Citation Analysis]
27 Lin J, Niu Z, Xue Y, Gao J, Zhang M, Li M, Peng Y, Zhang S, Li W, Zhang Q, Li X. Chronic vitamin D3 supplementation alleviates cognition impairment via inhibition of oxidative stress regulated by PI3K/AKT/Nrf2 in APP/PS1 transgenic mice. Neurosci Lett 2022;783:136725. [PMID: 35697158 DOI: 10.1016/j.neulet.2022.136725] [Reference Citation Analysis]
28 Fernández-Ginés R, Encinar JA, Hayes JD, Oliva B, Rodríguez-Franco MI, Rojo AI, Cuadrado A. An inhibitor of interaction between the transcription factor NRF2 and the E3 ubiquitin ligase adapter β-TrCP delivers anti-inflammatory responses in mouse liver. Redox Biol 2022;55:102396. [PMID: 35839629 DOI: 10.1016/j.redox.2022.102396] [Reference Citation Analysis]
29 Ma X, Xu S, Li J, Cui L, Dong J, Meng X, Zhu G, Wang H. Selenomethionine protected BMECs from inflammatory injury and oxidative damage induced by Klebsiella pneumoniae by inhibiting the NF-κB and activating the Nrf2 signaling pathway. Int Immunopharmacol 2022;110:109027. [PMID: 35820365 DOI: 10.1016/j.intimp.2022.109027] [Reference Citation Analysis]
30 Taylor E, Kim Y, Zhang K, Chau L, Nguyen BC, Rayalam S, Wang X. Antiaging Mechanism of Natural Compounds: Effects on Autophagy and Oxidative Stress. Molecules 2022;27:4396. [PMID: 35889266 DOI: 10.3390/molecules27144396] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Tang Y, Zhang Z, Chen Y, Qin S, Zhou L, Gao W, Shen Z. Metabolic Adaptation-Mediated Cancer Survival and Progression in Oxidative Stress. Antioxidants 2022;11:1324. [DOI: 10.3390/antiox11071324] [Reference Citation Analysis]
32 Rotimi DE, Ojo OA, Olaolu TD, Adeyemi OS. Exploring Nrf2 as a therapeutic target in testicular dysfunction. Cell Tissue Res 2022. [PMID: 35788899 DOI: 10.1007/s00441-022-03664-3] [Reference Citation Analysis]
33 Herrema H, Guan D, Choi JW, Feng X, Salazar Hernandez MA, Faruk F, Auen T, Boudett E, Tao R, Chun H, Ozcan U. FKBP11 rewires UPR signaling to promote glucose homeostasis in type 2 diabetes and obesity. Cell Metab 2022;34:1004-1022.e8. [PMID: 35793654 DOI: 10.1016/j.cmet.2022.06.007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Ding X, Chen Y, Zhou L, Wu R, Jian T, Lyu H, Liu Y, Chen J. Bisdemethoxycurcumin Attenuated Renal Injury via Activation of Keap1/Nrf2 Pathway in High-Fat Diet-Fed Mice. IJMS 2022;23:7395. [DOI: 10.3390/ijms23137395] [Reference Citation Analysis]
35 Li Y, Yang J, Zhang Q, Xu S, Sun W, Ge S, Xu X, Jager MJ, Jia R, Zhang J, Fan X. Copper ionophore elesclomol selectively targets GNAQ/11-mutant uveal melanoma. Oncogene 2022. [PMID: 35697803 DOI: 10.1038/s41388-022-02364-0] [Reference Citation Analysis]
36 Pouremamali F, Pouremamali A, Dadashpour M, Soozangar N, Jeddi F. An update of Nrf2 activators and inhibitors in cancer prevention/promotion. Cell Commun Signal 2022;20:100. [PMID: 35773670 DOI: 10.1186/s12964-022-00906-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
37 Liu C, Boeren S, Rietjens IMCM. Intra- and Inter-individual Differences in the Human Intestinal Microbial Conversion of (-)-Epicatechin and Bioactivity of Its Major Colonic Metabolite 5-(3′,4′-Dihydroxy-Phenyl)-γ-Valerolactone in Regulating Nrf2-Mediated Gene Expression. Front Nutr 2022;9:910785. [DOI: 10.3389/fnut.2022.910785] [Reference Citation Analysis]
38 Zhang S, Duan S, Xie Z, Bao W, Xu B, Yang W, Zhou L. Epigenetic Therapeutics Targeting NRF2/KEAP1 Signaling in Cancer Oxidative Stress. Front Pharmacol 2022;13:924817. [PMID: 35754474 DOI: 10.3389/fphar.2022.924817] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
39 Chen M, Wen H, Zhou S, Yan X, Li H. Patchouli Alcohol Inhibits D-Gal Induced Oxidative Stress and Ameliorates the Quality of Aging Cartilage via Activating the Nrf2/HO-1 Pathway in Mice. Oxid Med Cell Longev 2022;2022:6821170. [PMID: 35720186 DOI: 10.1155/2022/6821170] [Reference Citation Analysis]
40 Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022;188:221-61. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Powers SK, Schrager M. Redox signaling regulates skeletal muscle remodeling in response to exercise and prolonged inactivity. Redox Biol 2022;54:102374. [PMID: 35738088 DOI: 10.1016/j.redox.2022.102374] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Grishanova AY, Perepechaeva ML. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int J Mol Sci 2022;23:6719. [PMID: 35743162 DOI: 10.3390/ijms23126719] [Reference Citation Analysis]
43 da Silva RC, Fagundes RR, Faber KN, Campos ÉG. Pro-Oxidant and Cytotoxic Effects of Tucum-Do-Cerrado (Bactris setosa Mart.) Extracts in Colorectal Adenocarcinoma Caco-2 Cells. Nutr Cancer 2022;:1-12. [PMID: 35703849 DOI: 10.1080/01635581.2022.2086704] [Reference Citation Analysis]
44 Mondal P, Natesh J, Penta D, Meeran SM. Extract of Murraya koenigii selectively causes genomic instability by altering redox-status via targeting PI3K/AKT/Nrf2/caspase-3 signaling pathway in human non-small cell lung cancer. Phytomedicine 2022;104:154272. [PMID: 35728387 DOI: 10.1016/j.phymed.2022.154272] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Qin Y, Qiao Y, Wang D, Li L, Li M, Yan G, Tang C, Malaguti M. Target Nuclear Factor Erythroid 2-Related Factor 2 in Pulmonary Hypertension: Molecular Insight into Application. Oxidative Medicine and Cellular Longevity 2022;2022:1-14. [DOI: 10.1155/2022/7845503] [Reference Citation Analysis]
46 Hao W, Li M, Cai Q, Wu S, Li X, He Q, Hu Y. Roles of NRF2 in Fibrotic Diseases: From Mechanisms to Therapeutic Approaches. Front Physiol 2022;13:889792. [DOI: 10.3389/fphys.2022.889792] [Reference Citation Analysis]
47 Wang L, Shannar AAF, Wu R, Chou P, Sarwar MS, Kuo HC, Peter RM, Wang Y, Su X, Kong AN. Butyrate Drives Metabolic Rewiring and Epigenetic Reprogramming in Human Colon Cancer Cells. Mol Nutr Food Res 2022;66:e2200028. [PMID: 35429118 DOI: 10.1002/mnfr.202200028] [Reference Citation Analysis]
48 Suzen S, Tucci P, Profumo E, Buttari B, Saso L. A Pivotal Role of Nrf2 in Neurodegenerative Disorders: A New Way for Therapeutic Strategies. Pharmaceuticals 2022;15:692. [DOI: 10.3390/ph15060692] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
49 Evans JA, Mendonca P, Soliman KFA. Neuroprotective Effects and Therapeutic Potential of the Citrus Flavonoid Hesperetin in Neurodegenerative Diseases. Nutrients 2022;14:2228. [PMID: 35684025 DOI: 10.3390/nu14112228] [Reference Citation Analysis]
50 Cantoni O, Zito E, Guidarelli A, Fiorani M, Ghezzi P. Mitochondrial ROS, ER Stress, and Nrf2 Crosstalk in the Regulation of Mitochondrial Apoptosis Induced by Arsenite. Antioxidants (Basel) 2022;11:1034. [PMID: 35624898 DOI: 10.3390/antiox11051034] [Reference Citation Analysis]
51 Zhou Q, Zhang N, Hu T, Xu H, Duan X, Liu B, Chen F, Wang M. Dietary phenolic-type Nrf2-activators: implications in the control of toxin-induced hepatic disorders. Food Funct 2022;13:5480-97. [PMID: 35411358 DOI: 10.1039/d1fo04237h] [Reference Citation Analysis]
52 Zhang J, Fang Y, Tang D, Xu X, Zhu X, Wu S, Yu H, Cheng H, Luo T, Shen Q, Gao Y, Ma C, Liu Y, Wei Z, Chen X, Tao F, He X, Cao Y. Activation of MT1/MT2 to Protect Testes and Leydig Cells against Cisplatin-Induced Oxidative Stress through the SIRT1/Nrf2 Signaling Pathway. Cells 2022;11:1690. [DOI: 10.3390/cells11101690] [Reference Citation Analysis]
53 Huang S, Huang Y, Lin W, Wang L, Yang Y, Li P, Xiao L, Chen Y, Chu Q, Yuan X, Tang C. Sitagliptin Alleviates Radiation-Induced Intestinal Injury by Activating NRF2-Antioxidant Axis, Mitigating NLRP3 Inf--lammasome Activation, and Reversing Gut Microbiota Disorder. Oxidative Medicine and Cellular Longevity 2022;2022:1-17. [DOI: 10.1155/2022/2586305] [Reference Citation Analysis]
54 Itokawa N, Oshima M, Koide S, Takayama N, Kuribayashi W, Nakajima-takagi Y, Aoyama K, Yamazaki S, Yamaguchi K, Furukawa Y, Eto K, Iwama A. Epigenetic traits inscribed in chromatin accessibility in aged hematopoietic stem cells. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-30440-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Huang Z, Wu M, Zeng L, Wang D, Sun J. The Beneficial Role of Nrf2 in the Endothelial Dysfunction of Atherosclerosis. Cardiology Research and Practice 2022;2022:1-7. [DOI: 10.1155/2022/4287711] [Reference Citation Analysis]
56 Dai W, Chen C, Dong G, Li G, Peng W, Liu X, Yang J, Li L, Xu R, Hu X. Alleviation of Fufang Fanshiliu decoction on type II diabetes mellitus by reducing insulin resistance: A comprehensive network prediction and experimental validation. J Ethnopharmacol 2022;294:115338. [PMID: 35568115 DOI: 10.1016/j.jep.2022.115338] [Reference Citation Analysis]
57 Lastra D, Escoll M, Cuadrado A. Transcription Factor NRF2 Participates in Cell Cycle Progression at the Level of G1/S and Mitotic Checkpoints. Antioxidants 2022;11:946. [DOI: 10.3390/antiox11050946] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Feng Q, Yu X, Qiao Y, Pan S, Wang R, Zheng B, Wang H, Ren KD, Liu H, Yang Y. Ferroptosis and Acute Kidney Injury (AKI): Molecular Mechanisms and Therapeutic Potentials. Front Pharmacol 2022;13:858676. [PMID: 35517803 DOI: 10.3389/fphar.2022.858676] [Reference Citation Analysis]
59 Salido E, Timson DJ, Betancor-fernández I, Palomino-morales R, Anoz-carbonell E, Pacheco-garcía JL, Medina M, Pey AL. Targeting HIF-1α Function in Cancer through the Chaperone Action of NQO1: Implications of Genetic Diversity of NQO1. JPM 2022;12:747. [DOI: 10.3390/jpm12050747] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
60 Imenez Silva PH, Mohebbi N. Kidney metabolism and acid-base control: back to the basics. Pflugers Arch 2022. [PMID: 35513635 DOI: 10.1007/s00424-022-02696-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
61 Subba R, Ahmad MH, Ghosh B, Mondal AC. Targeting NRF2 in Type 2 diabetes mellitus and depression: Efficacy of natural and synthetic compounds. Eur J Pharmacol 2022;:174993. [PMID: 35513015 DOI: 10.1016/j.ejphar.2022.174993] [Reference Citation Analysis]
62 Majkutewicz I. Dimethyl fumarate: A review of preclinical efficacy in models of neurodegenerative diseases. European Journal of Pharmacology 2022. [DOI: 10.1016/j.ejphar.2022.175025] [Reference Citation Analysis]
63 Bayo Jimenez MT, Frenis K, Hahad O, Steven S, Cohen G, Cuadrado A, Münzel T, Daiber A. Protective actions of nuclear factor erythroid 2-related factor 2 (NRF2) and downstream pathways against environmental stressors. Free Radical Biology and Medicine 2022. [DOI: 10.1016/j.freeradbiomed.2022.05.016] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
64 Lin J, Lin Y, Liu J, Liu S, Fang K, Hsu R, Huang C, Chang K, Lee K, Chang K, Su C, Chen Y. Norketamine, the Main Metabolite of Ketamine, Induces Mitochondria-Dependent and ER Stress-Triggered Apoptotic Death in Urothelial Cells via a Ca2+-Regulated ERK1/2-Activating Pathway. IJMS 2022;23:4666. [DOI: 10.3390/ijms23094666] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
65 Sadrkhanloo M, Entezari M, Orouei S, Zabolian A, Mirzaie A, Maghsoudloo A, Raesi R, Asadi N, Hashemi M, Zarrabi A, Khan H, Mirzaei S, Samarghandian S. Targeting Nrf2 in ischemia-reperfusion alleviation: From signaling networks to therapeutic targeting. Life Sci 2022;:120561. [PMID: 35460707 DOI: 10.1016/j.lfs.2022.120561] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
66 Wu J, Xue R, Wu M, Yin X, Xie B, Meng Q, Szewczyk-golec K. Nrf2-Mediated Ferroptosis Inhibition Exerts a Protective Effect on Acute-on-Chronic Liver Failure. Oxidative Medicine and Cellular Longevity 2022;2022:1-23. [DOI: 10.1155/2022/4505513] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
67 Tahir M, Ali S, Zhang W, Lv B, Qiu W, Wang J. Aloperine: A Potent Modulator of Crucial Biological Mechanisms in Multiple Diseases. Biomedicines 2022;10:905. [DOI: 10.3390/biomedicines10040905] [Reference Citation Analysis]
68 Vellers HL, Cho H, Gladwell W, Gerrish K, Santos JH, Ofman G, Miller-degraff L, Mahler TB, Kleeberger SR. NRF2 Alters Mitochondrial Gene Expression in Neonate Mice Exposed to Hyperoxia. Antioxidants 2022;11:760. [DOI: 10.3390/antiox11040760] [Reference Citation Analysis]
69 Li Y, Wang Y, Zou W. Exploration on the Mechanism of Ubiquitin Proteasome System in Cerebral Stroke. Front Aging Neurosci 2022;14:814463. [DOI: 10.3389/fnagi.2022.814463] [Reference Citation Analysis]
70 Lu Z, Liu Z, Fang B. Propofol protects cardiomyocytes from doxorubicin-induced toxic injury by activating the nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4 signaling pathways. Bioengineered 2022;13:9145-55. [PMID: 35363601 DOI: 10.1080/21655979.2022.2036895] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
71 Sun Y, Wan W, Zhao X, Han X, Ye T, Chen X, Ran Q, Wang X, Liu X, Qu C, Shi S, Zhang C, Yang B. Chronic Sigma 1 receptor activation alleviates right ventricular dysfunction secondary to pulmonary arterial hypertension. Bioengineered 2022;13:10843-56. [PMID: 35473584 DOI: 10.1080/21655979.2022.2065953] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Wang H, Wang Q, Cai G, Duan Z, Nugent Z, Huang J, Zheng J, Borowsky AD, Li JJ, Liu P, Kung H, Murphy L, Chen H, Wang J. Nuclear TIGAR mediates an epigenetic and metabolic autoregulatory loop via NRF2 in cancer therapeutic resistance. Acta Pharmaceutica Sinica B 2022;12:1871-84. [DOI: 10.1016/j.apsb.2021.10.015] [Reference Citation Analysis]
73 Chen J, Jiang S, Shao H, Li B, Ji T, Staiculescu D, He J, Zhao J, Cai L, Liang X, Xu J, Cai X. CRISPR-Cas9-based genome-wide screening identified novel targets for treating sorafenib-resistant hepatocellular carcinoma: a cross-talk between FGF21 and the NRF2 pathway. Sci China Life Sci 2022. [PMID: 35380342 DOI: 10.1007/s11427-021-2067-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
74 Nikolajevic J, Ariaee N, Liew A, Abbasnia S, Fazeli B, Sabovic M. The Role of MicroRNAs in Endothelial Cell Senescence. Cells 2022;11:1185. [DOI: 10.3390/cells11071185] [Reference Citation Analysis]
75 Xu Z, Liu Y, Ma R, Chen J, Qiu J, Du S, Li C, Wu Z, Yang X, Chen Z, Chen T. Thermosensitive Hydrogel Incorporating Prussian Blue Nanoparticles Promotes Diabetic Wound Healing via ROS Scavenging and Mitochondrial Function Restoration. ACS Appl Mater Interfaces 2022;14:14059-71. [PMID: 35298140 DOI: 10.1021/acsami.1c24569] [Cited by in Crossref: 5] [Article Influence: 5.0] [Reference Citation Analysis]
76 Zhao A, Jeffery EH, Miller MJ. Is Bitterness Only a Taste? The Expanding Area of Health Benefits of Brassica Vegetables and Potential for Bitter Taste Receptors to Support Health Benefits. Nutrients 2022;14:1434. [PMID: 35406047 DOI: 10.3390/nu14071434] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
77 Lv Y, Lv X, Zhang J, Cao G, Xu C, Zhang B, Lin W. BRD4 Targets the KEAP1-Nrf2-G6PD Axis and Suppresses Redox Metabolism in Small Cell Lung Cancer. Antioxidants (Basel) 2022;11:661. [PMID: 35453346 DOI: 10.3390/antiox11040661] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
78 Fischer F, Grigolon G, Benner C, Ristow M. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection. Physiol Rev 2022. [PMID: 35343830 DOI: 10.1152/physrev.00017.2021] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
79 Zhao M, Zhang B, Deng L. The Mechanism of Acrylamide-Induced Neurotoxicity: Current Status and Future Perspectives. Front Nutr 2022;9:859189. [DOI: 10.3389/fnut.2022.859189] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 Dias FRP, de Souza Almeida RR, Sovrani V, Thomaz NK, Gonçalves CA, Quincozes-Santos A, Bobermin LD. Glioprotective Effects of Resveratrol Against BMAA-Induced Astroglial Dysfunctions. Neurotox Res 2022. [PMID: 35320508 DOI: 10.1007/s12640-022-00492-9] [Reference Citation Analysis]
81 Wang F, Wang J, Shen Y, Li H, Rausch W, Huang X. Iron Dyshomeostasis and Ferroptosis: A New Alzheimer’s Disease Hypothesis? Front Aging Neurosci 2022;14:830569. [DOI: 10.3389/fnagi.2022.830569] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
82 Schuster C, Wolpert N, Moustaid-Moussa N, Gollahon LS. Combinatorial Effects of the Natural Products Arctigenin, Chlorogenic Acid, and Cinnamaldehyde Commit Oxidation Assassination on Breast Cancer Cells. Antioxidants (Basel) 2022;11:591. [PMID: 35326241 DOI: 10.3390/antiox11030591] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
83 Ordonez AA, Bullen CK, Villabona-Rueda AF, Thompson EA, Turner ML, Merino VF, Yan Y, Kim J, Davis SL, Komm O, Powell JD, D'Alessio FR, Yolken RH, Jain SK, Jones-Brando L. Sulforaphane exhibits antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses in vitro and in mice. Commun Biol 2022;5:242. [PMID: 35304580 DOI: 10.1038/s42003-022-03189-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
84 Vallion R, Hardonnière K, Bouredji A, Damiens MH, Deloménie C, Pallardy M, Ferret PJ, Kerdine-Römer S. The Inflammatory Response in Human Keratinocytes Exposed to Cinnamaldehyde Is Regulated by Nrf2. Antioxidants (Basel) 2022;11:575. [PMID: 35326225 DOI: 10.3390/antiox11030575] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Re L. Ozone in Medicine: A Few Points of Reflections. Front Physiol 2022;13:842229. [PMID: 35283761 DOI: 10.3389/fphys.2022.842229] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
86 Zhang Q, Wang L, Wang S, Cheng H, Xu L, Pei G, Wang Y, Fu C, Jiang Y, He C, Wei Q. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther 2022;7:78. [PMID: 35273164 DOI: 10.1038/s41392-022-00925-z] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
87 Zazueta C, Jimenez-uribe AP, Pedraza-chaverri J, Buelna-chontal M. Genetic Variations on Redox Control in Cardiometabolic Diseases: The Role of Nrf2. Antioxidants 2022;11:507. [DOI: 10.3390/antiox11030507] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
88 Guo T, Fang X, Liu Y, Ruan Y, Hu Y, Wang X, Hu Y, Wang G, Xu Y. Acute lung inflammation induced by zinc oxide nanoparticles: Evolution and intervention via NRF2 activator. Food Chem Toxicol 2022;:112898. [PMID: 35247504 DOI: 10.1016/j.fct.2022.112898] [Reference Citation Analysis]
89 Sáenz de Urturi D, Buqué X, Porteiro B, Folgueira C, Mora A, Delgado TC, Prieto-Fernández E, Olaizola P, Gómez-Santos B, Apodaka-Biguri M, González-Romero F, Nieva-Zuluaga A, Ruiz de Gauna M, Goikoetxea-Usandizaga N, García-Rodríguez JL, Gutierrez de Juan V, Aurrekoetxea I, Montalvo-Romeral V, Novoa EM, Martín-Guerrero I, Varela-Rey M, Bhanot S, Lee R, Banales JM, Syn WK, Sabio G, Martínez-Chantar ML, Nogueiras R, Aspichueta P. Methionine adenosyltransferase 1a antisense oligonucleotides activate the liver-brown adipose tissue axis preventing obesity and associated hepatosteatosis. Nat Commun 2022;13:1096. [PMID: 35232994 DOI: 10.1038/s41467-022-28749-z] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
90 Imdad S, Lim W, Kim JH, Kang C. Intertwined Relationship of Mitochondrial Metabolism, Gut Microbiome and Exercise Potential. Int J Mol Sci 2022;23:2679. [PMID: 35269818 DOI: 10.3390/ijms23052679] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
91 Mansouri A, Reiner Ž, Ruscica M, Tedeschi-reiner E, Radbakhsh S, Bagheri Ekta M, Sahebkar A. Antioxidant Effects of Statins by Modulating Nrf2 and Nrf2/HO-1 Signaling in Different Diseases. JCM 2022;11:1313. [DOI: 10.3390/jcm11051313] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
92 Zhao Y, Jia M, Chen W, Liu Z. The neuroprotective effects of intermittent fasting on brain aging and neurodegenerative diseases via regulating mitochondrial function. Free Radic Biol Med 2022:S0891-5849(22)00074-0. [PMID: 35218914 DOI: 10.1016/j.freeradbiomed.2022.02.021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
93 Basu P, Averitt DL, Maier C, Basu A. The Effects of Nuclear Factor Erythroid 2 (NFE2)-Related Factor 2 (Nrf2) Activation in Preclinical Models of Peripheral Neuropathic Pain. Antioxidants (Basel) 2022;11:430. [PMID: 35204312 DOI: 10.3390/antiox11020430] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 11.0] [Reference Citation Analysis]
94 Ryan DG, Knatko EV, Casey AM, Hukelmann JL, Dayalan Naidu S, Brenes AJ, Ekkunagul T, Baker C, Higgins M, Tronci L, Nikitopolou E, Honda T, Hartley RC, O'Neill LAJ, Frezza C, Lamond AI, Abramov AY, Arthur JSC, Cantrell DA, Murphy MP, Dinkova-Kostova AT. Nrf2 activation reprograms macrophage intermediary metabolism and suppresses the type I interferon response. iScience 2022;25:103827. [PMID: 35198887 DOI: 10.1016/j.isci.2022.103827] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
95 Longobucco Y, Masini A, Marini S, Barone G, Fimognari C, Bragonzoni L, Dallolio L, Maffei F, de Cassia Marqueti R. Exercise and Oxidative Stress Biomarkers among Adult with Cancer: A Systematic Review. Oxidative Medicine and Cellular Longevity 2022;2022:1-16. [DOI: 10.1155/2022/2097318] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
96 Park J, Kim SK, Hallis SP, Choi BH, Kwak MK. Role of CD133/NRF2 Axis in the Development of Colon Cancer Stem Cell-Like Properties. Front Oncol 2021;11:808300. [PMID: 35155201 DOI: 10.3389/fonc.2021.808300] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
97 Romani P, Nirchio N, Arboit M, Barbieri V, Tosi A, Michielin F, Shibuya S, Benoist T, Wu D, Hindmarch CCT, Giomo M, Urciuolo A, Giamogante F, Roveri A, Chakravarty P, Montagner M, Calì T, Elvassore N, Archer SL, De Coppi P, Rosato A, Martello G, Dupont S. Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance. Nat Cell Biol. [DOI: 10.1038/s41556-022-00843-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
98 Fagiani F, Di Marino D, Romagnoli A, Travelli C, Voltan D, Mannelli LDC, Racchi M, Govoni S, Lanni C. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct Target Ther 2022;7:41. [PMID: 35136018 DOI: 10.1038/s41392-022-00899-y] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
99 Zhang R, Gao Y, Li Y, Geng D, Liang Y, He Q, Wang L, Cui H. Nrf2 improves hippocampal synaptic plasticity, learning and memory through the circ-Vps41/miR-26a-5p/CaMKIV regulatory network. Exp Neurol 2022;:113998. [PMID: 35143833 DOI: 10.1016/j.expneurol.2022.113998] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
100 Zhang F, Xu H, Yuan Y, Huang H, Wu X, Zhang J, Fu J. Lyophyllum decastes fruiting body polysaccharide alleviates acute liver injury by activating the Nrf2 signaling pathway. Food Funct 2022. [PMID: 35107114 DOI: 10.1039/d1fo01701b] [Reference Citation Analysis]
101 Nishizawa H, Yamanaka M, Igarashi K. Ferroptosis: regulation by competition between NRF2 and BACH1 and propagation of the death signal. FEBS J 2022. [PMID: 35107212 DOI: 10.1111/febs.16382] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
102 Gao W, Guo L, Yang Y, Wang Y, Xia S, Gong H, Zhang B, Yan M. Dissecting the Crosstalk Between Nrf2 and NF-κB Response Pathways in Drug-Induced Toxicity. Front Cell Dev Biol 2022;9:809952. [DOI: 10.3389/fcell.2021.809952] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
103 Armand L, Fofana M, Couturier-Becavin K, Andriamihaja M, Blachier F. Dual effects of the tryptophan-derived bacterial metabolite indole on colonic epithelial cell metabolism and physiology: comparison with its co-metabolite indoxyl sulfate. Amino Acids 2022. [PMID: 35107624 DOI: 10.1007/s00726-021-03122-4] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
104 Zhu C, Gu H, Jin Y, Wurm D, Freidhof B, Lu Y, Chen QM. Metabolomics of oxidative stress: Nrf2 independent depletion of NAD or increases of sugar alcohols. Toxicology and Applied Pharmacology 2022. [DOI: 10.1016/j.taap.2022.115949] [Reference Citation Analysis]
105 Wang W, Xiong L, Li Y, Song Z, Sun D, Li H, Chen L. Synthesis of lathyrane diterpenoid nitrogen-containing heterocyclic derivatives and evaluation of their anti-inflammatory activities. Bioorganic & Medicinal Chemistry 2022;56:116627. [DOI: 10.1016/j.bmc.2022.116627] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
106 Singh A, Kukreti R, Saso L, Kukreti S. Mechanistic Insight into Oxidative Stress-Triggered Signaling Pathways and Type 2 Diabetes. Molecules 2022;27:950. [DOI: 10.3390/molecules27030950] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 16.0] [Reference Citation Analysis]
107 Moustafah Y, Mohammed FF, Elmosalamy S, Ibrahim MA, F Tohamy A, Hassan NRA. Dysregulation of NrF2 expression mediates testicular injury and infertility in 3-monochloro-1,2-propandiol-intoxicated rats with special reference to accessory gland-related pathology. Environ Sci Pollut Res Int 2022;29:41140-50. [PMID: 35088268 DOI: 10.1007/s11356-021-18322-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
108 Kaur J, Rawat Y, Sood V, Periwal N, Rathore DK, Kumar S, Kumar N, Bhattacharyya S. Replication of Dengue Virus in K562-Megakaryocytes Induces Suppression in the Accumulation of Reactive Oxygen Species. Front Microbiol 2021;12:784070. [PMID: 35087488 DOI: 10.3389/fmicb.2021.784070] [Reference Citation Analysis]
109 Duarte P, Michalska P, Crisman E, Cuadrado A, León R. Novel Series of Dual NRF2 Inducers and Selective MAO-B Inhibitors for the Treatment of Parkinson’s Disease. Antioxidants 2022;11:247. [DOI: 10.3390/antiox11020247] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
110 Wu D, Khan FA, Huo L, Sun F, Huang C. Alternative splicing and MicroRNA: epigenetic mystique in male reproduction. RNA Biol 2022;19:162-75. [PMID: 35067179 DOI: 10.1080/15476286.2021.2024033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
111 Albert-Garay JS, Riesgo-Escovar JR, Salceda R. High glucose concentrations induce oxidative stress by inhibiting Nrf2 expression in rat Müller retinal cells in vitro. Sci Rep 2022;12:1261. [PMID: 35075205 DOI: 10.1038/s41598-022-05284-x] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
112 Dayalan Naidu S, Suzuki T, Dikovskaya D, Knatko EV, Higgins M, Sato M, Novak M, Villegas JA, Moore TW, Yamamoto M, Dinkova-Kostova AT. The isoquinoline PRL-295 increases the thermostability of Keap1 and disrupts its interaction with Nrf2. iScience 2022;25:103703. [PMID: 35036882 DOI: 10.1016/j.isci.2021.103703] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
113 Ghanim BY, Qinna NA. Nrf2/ARE axis signalling in hepatocyte cellular death. Mol Biol Rep 2022. [PMID: 35020121 DOI: 10.1007/s11033-022-07125-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
114 Doxakis E. Insights into the multifaceted role of circular RNAs: implications for Parkinson's disease pathogenesis and diagnosis. NPJ Parkinsons Dis 2022;8:7. [PMID: 35013342 DOI: 10.1038/s41531-021-00265-9] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
115 Wang G, Zhang J, Zhang K, Zhao Q, Zhou F, Xu J, Xue W, Zhang C, Fu C. Possible action mechanisms of vitamin D supplementation in combating obesity and obesity-related issues of bone health: a mini review. Food Sci Technol 2022;42:e114621. [DOI: 10.1590/fst.114621] [Reference Citation Analysis]
116 Atyah M, Zhou C, Zhou Q, Chen W, Weng J, Wang P, Shi Y, Dong Q, Ren N. The Age-Specific Features and Clinical Significance of NRF2 and MAPK10 Expression in HCC Patients. IJGM 2022;Volume 15:737-48. [DOI: 10.2147/ijgm.s351263] [Reference Citation Analysis]
117 Mohammadi G, Karimi AA, Hafezieh M, Dawood MAO, Abo-Al-Ela HG. Pistachio hulls polysaccharide protects Nile tilapia against LPS-induced excessive inflammatory responses and oxidative stress possibly via TLR2 and Nrf2 signaling pathways. Fish Shellfish Immunol 2021:S1050-4648(21)00458-7. [PMID: 34968712 DOI: 10.1016/j.fsi.2021.12.042] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
118 Weitzenböck HP, Gschwendtner A, Wiesner C, Depke M, Schmidt F, Trautinger F, Hengstschläger M, Hundsberger H, Mikula M. Proteome analysis of NRF2 inhibition in melanoma reveals CD44 up-regulation and increased apoptosis resistance upon vemurafenib treatment. Cancer Med 2021. [PMID: 34951143 DOI: 10.1002/cam4.4506] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
119 Wang Y, Tian Q, Hao Y, Yao W, Lu J, Chen C, Chen X, Lin Y, Huang Q, Xu L, Hu J, Lei S, Wei Z, Luo Y, Li Z, Hu L, Tang J, Wu Q, Zhou X, Wu Y, Yin Z, Xu J, Ye L. The kinase complex mTORC2 promotes the longevity of virus-specific memory CD4+ T cells by preventing ferroptosis. Nat Immunol 2021. [PMID: 34949833 DOI: 10.1038/s41590-021-01090-1] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
120 Karkossa I, Bannuscher A, Hellack B, Wohlleben W, Laloy J, Stan MS, Dinischiotu A, Wiemann M, Luch A, Haase A, von Bergen M, Schubert K. Nanomaterials induce different levels of oxidative stress, depending on the used model system: Comparison of in vitro and in vivo effects. Sci Total Environ 2021;801:149538. [PMID: 34428663 DOI: 10.1016/j.scitotenv.2021.149538] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
121 Schaupp CM, Botta D, White CC, Scoville DK, Srinouanprachanh S, Bammler TK, MacDonald J, Kavanagh TJ. Persistence of improved glucose homeostasis in Gclm null mice with age and cadmium treatment. Redox Biol 2021;49:102213. [PMID: 34953454 DOI: 10.1016/j.redox.2021.102213] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
122 Tamminen T, Koskela A, Toropainen E, Gurubaran IS, Winiarczyk M, Liukkonen M, Paterno JJ, Lackman P, Sadeghi A, Viiri J, Hyttinen JMT, Koskelainen A, Kaarniranta K. Pinosylvin Extract Retinari™ Sustains Electrophysiological Function, Prevents Thinning of Retina, and Enhances Cellular Response to Oxidative Stress in NFE2L2 Knockout Mice. Oxid Med Cell Longev 2021;2021:8028427. [PMID: 34917233 DOI: 10.1155/2021/8028427] [Reference Citation Analysis]
123 Yang H, Wang Y, Liu M, Liu X, Jiao Y, Jin S, Shan A, Feng X. Effects of Dietary Resveratrol Supplementation on Growth Performance and Anti-Inflammatory Ability in Ducks (Anas platyrhynchos) through the Nrf2/HO-1 and TLR4/NF-κB Signaling Pathways. Animals (Basel) 2021;11:3588. [PMID: 34944363 DOI: 10.3390/ani11123588] [Reference Citation Analysis]
124 Rosarda JD, Baron KR, Nutsch K, Kline GM, Stanton C, Kelly JW, Bollong MJ, Wiseman RL. Metabolically Activated Proteostasis Regulators Protect against Glutamate Toxicity by Activating NRF2. ACS Chem Biol 2021;16:2852-63. [PMID: 34797633 DOI: 10.1021/acschembio.1c00810] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
125 Wang J, Yang J, Cao M, Zhao Z, Cao B, Yu S. The potential roles of Nrf2/Keap1 signaling in anticancer drug interactions. Curr Res Pharmacol Drug Discov 2021;2:100028. [PMID: 34909662 DOI: 10.1016/j.crphar.2021.100028] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
126 Cardoso S, Moreira PI. Insulin-Induced Recurrent Hypoglycemia Up-Regulates Glucose Metabolism in the Brain Cortex of Chemically Induced Diabetic Rats. Int J Mol Sci 2021;22:13470. [PMID: 34948265 DOI: 10.3390/ijms222413470] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
127 Zhang XN, Zhao N, Guo FF, Wang YR, Liu SX, Zeng T. Diallyl disulfide suppresses the lipopolysaccharide-driven inflammatory response of macrophages by activating the Nrf2 pathway. Food Chem Toxicol 2022;159:112760. [PMID: 34896185 DOI: 10.1016/j.fct.2021.112760] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
128 Sommella E, Verna G, Liso M, Salviati E, Esposito T, Carbone D, Pecoraro C, Chieppa M, Campiglia P. Hop-derived fraction rich in beta acids and prenylflavonoids regulates the inflammatory response in dendritic cells differently from quercetin: unveiling metabolic changes by mass spectrometry-based metabolomics. Food Funct 2021;12:12800-11. [PMID: 34859812 DOI: 10.1039/d1fo02361f] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
129 Ying YT, Yang J, Tan X, Liu R, Zhuang Y, Xu JX, Ren WJ. Escherichia coli and Staphylococcus aureus Differentially Regulate Nrf2 Pathway in Bovine Mammary Epithelial Cells: Relation to Distinct Innate Immune Response. Cells 2021;10:3426. [PMID: 34943933 DOI: 10.3390/cells10123426] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
130 Khalili F, Vaisi-Raygani A, Shakiba E, Kohsari M, Dehbani M, Naseri R, Asadi S, Rahimi Z, Rahimi M, Rahimi Z. Oxidative stress parameters and keap 1 variants in T2DM: Association with T2DM, diabetic neuropathy, diabetic retinopathy, and obesity. J Clin Lab Anal 2021;:e24163. [PMID: 34861061 DOI: 10.1002/jcla.24163] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
131 Yang Q, Liu J, Wang Y, Zhao W, Wang W, Cui J, Yang J, Yue Y, Zhang S, Chu M, Lyu Q, Ma L, Tang Y, Hu Y, Miao K, Zhao H, Tian J, An L. A proteomic atlas of ligand-receptor interactions at the ovine maternal-fetal interface reveals the role of histone lactylation in uterine remodeling. J Biol Chem 2021;298:101456. [PMID: 34861240 DOI: 10.1016/j.jbc.2021.101456] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
132 Piña-Olmos S, Dolores-Hernández M, Diaz-Torres R, Ramírez-Bribiesca JE, López-Arellano R, López Barrera LD, Ramírez-Noguera P. Precision-cut liver slices as a model for assess hepatic cellular response of chitosan-glutathione nanoparticles on cultures treated with zilpaterol and clenbuterol. Toxicol Mech Methods 2021;:1-12. [PMID: 34747310 DOI: 10.1080/15376516.2021.2002992] [Reference Citation Analysis]
133 Lin CY, Chang CB, Wu RC, Chao A, Lee YS, Tsai CN, Chen CH, Yen CF, Tsai CL. Glucose Activates Lysine-Specific Demethylase 1 through the KEAP1/p62 Pathway. Antioxidants (Basel) 2021;10:1898. [PMID: 34942999 DOI: 10.3390/antiox10121898] [Reference Citation Analysis]
134 Khan H, Patel S, Majumdar A. Role of NRF2 and Sirtuin activators in COVID-19. Clin Immunol 2021;233:108879. [PMID: 34798239 DOI: 10.1016/j.clim.2021.108879] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
135 Siraj MA, Islam MA, Al Fahad MA, Kheya HR, Xiao J, Simal-gandara J. Cancer Chemopreventive Role of Dietary Terpenoids by Modulating Keap1-Nrf2-ARE Signaling System—A Comprehensive Update. Applied Sciences 2021;11:10806. [DOI: 10.3390/app112210806] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
136 Zhang H, Zhang E, Hu H. Role of Ferroptosis in Non-Alcoholic Fatty Liver Disease and Its Implications for Therapeutic Strategies. Biomedicines 2021;9:1660. [PMID: 34829889 DOI: 10.3390/biomedicines9111660] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
137 Zhou L, Yan F, Jiang R, Liu J, Cai L, Wang Y. Administration of Nrf-2-Modified Hair-Follicle MSCs Ameliorates DSS-Induced Ulcerative Colitis in Rats. Oxid Med Cell Longev 2021;2021:9930187. [PMID: 34745427 DOI: 10.1155/2021/9930187] [Reference Citation Analysis]
138 Petrov PD, Soluyanova P, Sánchez-Campos S, Castell JV, Jover R. Molecular mechanisms of hepatotoxic cholestasis by clavulanic acid: Role of NRF2 and FXR pathways. Food Chem Toxicol 2021;158:112664. [PMID: 34767876 DOI: 10.1016/j.fct.2021.112664] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
139 Yang L, Shen C, Estrada-Bernal A, Robb R, Chatterjee M, Sebastian N, Webb A, Mo X, Chen W, Krishnan S, Williams TM. Oncogenic KRAS drives radioresistance through upregulation of NRF2-53BP1-mediated non-homologous end-joining repair. Nucleic Acids Res 2021;49:11067-82. [PMID: 34606602 DOI: 10.1093/nar/gkab871] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
140 He L, Guo C, Peng C, Li Y. Advances of natural activators for Nrf2 signaling pathway on cholestatic liver injury protection: a review. Eur J Pharmacol 2021;910:174447. [PMID: 34461126 DOI: 10.1016/j.ejphar.2021.174447] [Reference Citation Analysis]
141 Gao S, Heng N, Liu F, Guo Y, Chen Y, Wang L, Ni H, Sheng X, Wang X, Xing K, Xiao L, Qi X. Natural astaxanthin enhanced antioxidant capacity and improved semen quality through the MAPK/Nrf2 pathway in aging layer breeder roosters. J Anim Sci Biotechnol 2021;12:112. [PMID: 34732261 DOI: 10.1186/s40104-021-00633-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
142 Mata A, Cadenas S. The Antioxidant Transcription Factor Nrf2 in Cardiac Ischemia-Reperfusion Injury. Int J Mol Sci 2021;22:11939. [PMID: 34769371 DOI: 10.3390/ijms222111939] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
143 Yang H, Wang Y, Jin S, Pang Q, Shan A, Feng X. Dietary resveratrol alleviated lipopolysaccharide-induced ileitis through Nrf2 and NF-κB signalling pathways in ducks (Anas platyrhynchos). J Anim Physiol Anim Nutr (Berl) 2021. [PMID: 34729831 DOI: 10.1111/jpn.13657] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
144 Ulasov AV, Rosenkranz AA, Georgiev GP, Sobolev AS. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci 2021;:120111. [PMID: 34732330 DOI: 10.1016/j.lfs.2021.120111] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 23.0] [Reference Citation Analysis]
145 Huang W, Liu Y, Luz A, Berrong M, Meyer JN, Zou Y, Swann E, Sundaramoorthy P, Kang Y, Jauhari S, Lento W, Chao N, Racioppi L. Calcium/Calmodulin Dependent Protein Kinase Kinase 2 Regulates the Expansion of Tumor-Induced Myeloid-Derived Suppressor Cells. Front Immunol 2021;12:754083. [PMID: 34712241 DOI: 10.3389/fimmu.2021.754083] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
146 Fratta Pasini AM, Stranieri C, Girelli D, Busti F, Cominacini L. Is Ferroptosis a Key Component of the Process Leading to Multiorgan Damage in COVID-19? Antioxidants (Basel) 2021;10:1677. [PMID: 34829548 DOI: 10.3390/antiox10111677] [Cited by in F6Publishing: 14] [Reference Citation Analysis]
147 Lu Y, Gu X, Wan Q, Feng H, Liu Y. Co-immunofluorescence of MRPL12 and Nrf2 in HK2 Cells. Bio Protoc 2021;11:e4191. [PMID: 34761064 DOI: 10.21769/BioProtoc.4191] [Reference Citation Analysis]
148 Lavrova AV, Gretskaya NM, Bezuglov VV. Role of Oxidative Stress in the Etiology of Parkinson’s Disease: Advanced Therapeutic Products. Russ J Bioorg Chem 2021;47:980-96. [DOI: 10.1134/s1068162021050307] [Reference Citation Analysis]
149 González-Bosch C, Boorman E, Zunszain PA, Mann GE. Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol 2021;47:102165. [PMID: 34662811 DOI: 10.1016/j.redox.2021.102165] [Reference Citation Analysis]
150 Lu J, Zhao Y, Liu M, Lu J, Guan S. Toward improved human health: Nrf2 plays a critical role in regulating ferroptosis. Food Funct 2021;12:9583-606. [PMID: 34542140 DOI: 10.1039/d1fo01036k] [Cited by in F6Publishing: 10] [Reference Citation Analysis]
151 Sánchez-García FJ, Pérez-Hernández CA, Rodríguez-Murillo M, Moreno-Altamirano MMB. The Role of Tricarboxylic Acid Cycle Metabolites in Viral Infections. Front Cell Infect Microbiol 2021;11:725043. [PMID: 34595133 DOI: 10.3389/fcimb.2021.725043] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
152 Sui S, Xu S, Pang D. Emerging role of ferroptosis in breast cancer: New dawn for overcoming tumor progression. Pharmacol Ther 2021;:107992. [PMID: 34606782 DOI: 10.1016/j.pharmthera.2021.107992] [Reference Citation Analysis]
153 Poganik JR, Huang KT, Parvez S, Zhao Y, Raja S, Long MJC, Aye Y. Wdr1 and cofilin are necessary mediators of immune-cell-specific apoptosis triggered by Tecfidera. Nat Commun 2021;12:5736. [PMID: 34593792 DOI: 10.1038/s41467-021-25466-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
154 Quincozes-Santos A, Santos CL, de Souza Almeida RR, da Silva A, Thomaz NK, Costa NLF, Weber FB, Schmitz I, Medeiros LS, Medeiros L, Dotto BS, Dias FRP, Sovrani V, Bobermin LD. Gliotoxicity and Glioprotection: the Dual Role of Glial Cells. Mol Neurobiol 2021. [PMID: 34581988 DOI: 10.1007/s12035-021-02574-9] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
155 Zhao S, Chen W, Li W, Yu W, Li S, Rao T, Ruan Y, Zhou X, Liu C, Qi Y, Cheng F. LncRNA TUG1 attenuates ischaemia-reperfusion-induced apoptosis of renal tubular epithelial cells by sponging miR-144-3p via targeting Nrf2. J Cell Mol Med 2021;25:9767-83. [PMID: 34547172 DOI: 10.1111/jcmm.16924] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
156 Wang J, Sun D, Huang L, Wang S, Jin Y. Targeting Reactive Oxygen Species Capacity of Tumor Cells with Repurposed Drug as an Anticancer Therapy. Oxid Med Cell Longev 2021;2021:8532940. [PMID: 34539975 DOI: 10.1155/2021/8532940] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
157 Popoola TD, Guetchueng ST, Ritchie KJ, Awodele O, Dempster NM, Akinloye O, Sarker SD, Fatokun AA. Potent Nrf2-inducing, antioxidant, and anti-inflammatory effects and identification of constituents validate the anti-cancer use of Uvaria chamae and Olax subscorpioidea. BMC Complement Med Ther 2021;21:234. [PMID: 34537049 DOI: 10.1186/s12906-021-03404-0] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
158 Herengt A, Thyrsted J, Holm CK. NRF2 in Viral Infection. Antioxidants (Basel) 2021;10:1491. [PMID: 34573123 DOI: 10.3390/antiox10091491] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
159 Kamel AKA, Hozayen W, El-Kawi SHA, Hashem KS. Galaxaura elongata Extract (GE) Modulates Vanadyl Sulfate-Induced Renal Damage via Regulating TGF-β/Smads and Nrf2/NF-κB Pathways. Biol Trace Elem Res 2021. [PMID: 34533747 DOI: 10.1007/s12011-021-02913-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
160 Schrier MS, Zhang Y, Trivedi MS, Deth RC. Decreased cortical Nrf2 gene expression in autism and its relationship to thiol and cobalamin status. Biochimie 2022;192:1-12. [PMID: 34517051 DOI: 10.1016/j.biochi.2021.09.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
161 Wang YL, Wu J, Li RX, Sun YT, Ma YJ, Zhao CY, Zou J, Zhang YY, Sun XD. A double-edged sword: The Kelch-like ECH-associated protein 1-nuclear factor erythroid-derived 2-related factor 2-antioxidant response element pathway targeted pharmacological modulation in nonalcoholic fatty liver disease. Curr Opin Pharmacol 2021;60:281-90. [PMID: 34500407 DOI: 10.1016/j.coph.2021.07.021] [Reference Citation Analysis]
162 Chang SH, Lee JS, Yun UJ, Park KW. A Role of Stress Sensor Nrf2 in Stimulating Thermogenesis and Energy Expenditure. Biomedicines 2021;9:1196. [PMID: 34572382 DOI: 10.3390/biomedicines9091196] [Reference Citation Analysis]
163 Zoccarato A, Nabeebaccus AA, Oexner RR, Santos CXC, Shah AM. The nexus between redox state and intermediary metabolism. FEBS J 2021. [PMID: 34496138 DOI: 10.1111/febs.16191] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
164 Olonisakin TF, Suber T, Gonzalez-Ferrer S, Xiong Z, Peñaloza HF, van der Geest R, Xiong Y, Osei-Hwedieh DO, Tejero J, Rosengart MR, Mars WM, Van Tyne D, Perlegas A, Brashears S, Kim-Shapiro DB, Gladwin MT, Bachman MA, Hod EA, St Croix C, Tyurina YY, Kagan VE, Mallampalli RK, Ray A, Ray P, Lee JS. Stressed erythrophagocytosis induces immunosuppression during sepsis through heme-mediated STAT1 dysregulation. J Clin Invest 2021;131:137468. [PMID: 32941182 DOI: 10.1172/JCI137468] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
165 Zgorzynska E, Dziedzic B, Walczewska A. An Overview of the Nrf2/ARE Pathway and Its Role in Neurodegenerative Diseases. Int J Mol Sci 2021;22:9592. [PMID: 34502501 DOI: 10.3390/ijms22179592] [Cited by in F6Publishing: 15] [Reference Citation Analysis]
166 Younas, Khan A, Shehzad O, Seo EK, Onder A, Khan S. Anti-allergic activities of Umbelliferone against histamine- and Picryl chloride-induced ear edema by targeting Nrf2/iNOS signaling in mice. BMC Complement Med Ther 2021;21:215. [PMID: 34452623 DOI: 10.1186/s12906-021-03384-1] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
167 Cao W, Gao J, Zhang Y, Li A, Yu P, Cao N, Liang J, Tang X. Autophagy up-regulated by MEK/ERK promotes the repair of DNA damage caused by aflatoxin B1. Toxicol Mech Methods 2021;:1-10. [PMID: 34396909 DOI: 10.1080/15376516.2021.1968985] [Reference Citation Analysis]
168 Zinghirino F, Pappalardo XG, Messina A, Nicosia G, De Pinto V, Guarino F. VDAC Genes Expression and Regulation in Mammals. Front Physiol 2021;12:708695. [PMID: 34421651 DOI: 10.3389/fphys.2021.708695] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
169 Heurtaux T, Kirchmeyer M, Koncina E, Felten P, Richart L, Uriarte Huarte O, Schohn H, Mittelbronn M. Apomorphine Reduces A53T α-Synuclein-Induced Microglial Reactivity Through Activation of NRF2 Signalling Pathway. Cell Mol Neurobiol 2021. [PMID: 34415465 DOI: 10.1007/s10571-021-01131-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
170 Ryšavá A, Vostálová J, Rajnochová Svobodová A. Effect of ultraviolet radiation on the Nrf2 signaling pathway in skin cells. Int J Radiat Biol 2021;:1-21. [PMID: 34338112 DOI: 10.1080/09553002.2021.1962566] [Reference Citation Analysis]
171 Saeedan AS, Soliman GA, Abdel-Rahman RF, Abd-Elsalam RM, Ogaly HA, Alharthy KM, Abdel-Kader MS. Possible Synergistic Antidiabetic Effects of Quantified Artemisia judaica Extract and Glyburide in Streptozotocin-Induced Diabetic Rats via Restoration of PPAR-α mRNA Expression. Biology (Basel) 2021;10:796. [PMID: 34440028 DOI: 10.3390/biology10080796] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
172 Zhao Y, Lu J, Mao A, Zhang R, Guan S. Autophagy Inhibition Plays a Protective Role in Ferroptosis Induced by Alcohol via the p62-Keap1-Nrf2 Pathway. J Agric Food Chem 2021;69:9671-83. [PMID: 34388345 DOI: 10.1021/acs.jafc.1c03751] [Reference Citation Analysis]
173 Walters TS, McIntosh DJ, Ingram SM, Tillery L, Motley ED, Arinze IJ, Misra S. SUMO-Modification of Human Nrf2 at K110 and K533 Regulates Its Nucleocytoplasmic Localization, Stability and Transcriptional Activity. Cell Physiol Biochem 2021;55:141-59. [PMID: 33770425 DOI: 10.33594/000000351] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
174 Chan BKY, Elmasry M, Forootan SS, Russomanno G, Bunday TM, Zhang F, Brillant N, Starkey Lewis PJ, Aird R, Ricci E, Andrews TD, Sison-Young RL, Schofield AL, Fang Y, Lister A, Sharkey JW, Poptani H, Kitteringham NR, Forbes SJ, Malik HZ, Fenwick SW, Park BK, Goldring CE, Copple IM. Pharmacological Activation of Nrf2 Enhances Functional Liver Regeneration. Hepatology 2021;74:973-86. [PMID: 33872408 DOI: 10.1002/hep.31859] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
175 Chew LY, Zhang H, He J, Yu F. The Nrf2-Keap1 pathway is activated by steroid hormone signaling to govern neuronal remodeling. Cell Rep 2021;36:109466. [PMID: 34348164 DOI: 10.1016/j.celrep.2021.109466] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
176 Vanani AR, Kalantari H, Mahdavinia M, Rashno M, Khorsandi L, Khodayar MJ. Dimethyl fumarate reduces oxidative stress, inflammation and fat deposition by modulation of Nrf2, SREBP-1c and NF-κB signaling in HFD fed mice. Life Sci 2021;283:119852. [PMID: 34332979 DOI: 10.1016/j.lfs.2021.119852] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
177 Wandt VK, Winkelbeiner N, Lossow K, Kopp JF, Schwarz M, Alker W, Nicolai MM, Simon L, Dietzel C, Hertel B, Pohl G, Ebert F, Schomburg L, Bornhorst J, Haase H, Kipp AP, Schwerdtle T. Ageing-associated effects of a long-term dietary modulation of four trace elements in mice. Redox Biol 2021;46:102083. [PMID: 34371368 DOI: 10.1016/j.redox.2021.102083] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
178 Rostagno A, Calero M, Holton JL, Revesz T, Lashley T, Ghiso J. Association of clusterin with the BRI2-derived amyloid molecules ABri and ADan. Neurobiol Dis 2021;158:105452. [PMID: 34298087 DOI: 10.1016/j.nbd.2021.105452] [Reference Citation Analysis]
179 Zhang Q, Li RL, Tao T, Sun JY, Liu J, Zhang T, Peng W, Wu CJ. Antiepileptic Effects of Cicadae Periostracum on Mice and Its Antiapoptotic Effects in H2O2-Stimulated PC12 Cells via Regulation of PI3K/Akt/Nrf2 Signaling Pathways. Oxid Med Cell Longev 2021;2021:5598818. [PMID: 34336105 DOI: 10.1155/2021/5598818] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
180 Ke T, Rocha JBT, Tinkov AA, Santamaria A, Bowman AB, Aschner M. The Role of Human LRRK2 in Acute Methylmercury Toxicity in Caenorhabditis elegans. Neurochem Res 2021. [PMID: 34272628 DOI: 10.1007/s11064-021-03394-y] [Reference Citation Analysis]
181 Saito Y, Kimura W. Roles of Phase Separation for Cellular Redox Maintenance. Front Genet 2021;12:691946. [PMID: 34306032 DOI: 10.3389/fgene.2021.691946] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
182 Erlich JR, To EE, Liong S, Brooks R, Vlahos R, O'Leary JJ, Brooks DA, Selemidis S. Targeting Evolutionary Conserved Oxidative Stress and Immunometabolic Pathways for the Treatment of Respiratory Infectious Diseases. Antioxid Redox Signal 2020;32:993-1013. [PMID: 32008371 DOI: 10.1089/ars.2020.8028] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 10.0] [Reference Citation Analysis]
183 Sies H, Ursini F. Homeostatic control of redox status and health. IUBMB Life 2021. [PMID: 34227739 DOI: 10.1002/iub.2519] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
184 Michalak A, Lach T, Cichoż-Lach H. Oxidative Stress-A Key Player in the Course of Alcohol-Related Liver Disease. J Clin Med 2021;10:3011. [PMID: 34300175 DOI: 10.3390/jcm10143011] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
185 Villavicencio Tejo F, Quintanilla RA. Contribution of the Nrf2 Pathway on Oxidative Damage and Mitochondrial Failure in Parkinson and Alzheimer's Disease. Antioxidants (Basel) 2021;10:1069. [PMID: 34356302 DOI: 10.3390/antiox10071069] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 13.0] [Reference Citation Analysis]
186 Anandhan A, Nguyen N, Syal A, Dreher LA, Dodson M, Zhang DD, Madhavan L. NRF2 Loss Accentuates Parkinsonian Pathology and Behavioral Dysfunction in Human α-Synuclein Overexpressing Mice. Aging Dis 2021;12:964-82. [PMID: 34221542 DOI: 10.14336/AD.2021.0511] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
187 Emeka PM, Rasool ST, Morsy MA, Islam MIH, Chohan MS. Protective effects of lutein against vancomycin-induced acute renal injury in mice via upregulation of peroxisome proliferator-activated receptor gamma/nuclear factor erythroid 2-related factor 2 and inhibition nuclear factor-kappaB/caspase 3. Korean J Physiol Pharmacol 2021;25:321-31. [PMID: 34187949 DOI: 10.4196/kjpp.2021.25.4.321] [Reference Citation Analysis]
188 Chun KS, Raut PK, Kim DH, Surh YJ. Role of chemopreventive phytochemicals in NRF2-mediated redox homeostasis in humans. Free Radic Biol Med 2021;172:699-715. [PMID: 34214633 DOI: 10.1016/j.freeradbiomed.2021.06.031] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
189 Bucciantini M, Leri M, Nardiello P, Casamenti F, Stefani M. Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants (Basel) 2021;10:1044. [PMID: 34209636 DOI: 10.3390/antiox10071044] [Cited by in Crossref: 3] [Cited by in F6Publishing: 24] [Article Influence: 3.0] [Reference Citation Analysis]
190 Jiang P, Chen L, Xu J, Liu W, Feng F, Qu W. Neuroprotective Effects of Rhynchophylline Against Aβ1-42-Induced Oxidative Stress, Neurodegeneration, and Memory Impairment Via Nrf2-ARE Activation. Neurochem Res 2021;46:2439-50. [PMID: 34170454 DOI: 10.1007/s11064-021-03343-9] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
191 Zhang W, Chen L, Xiong Y, Panayi AC, Abududilibaier A, Hu Y, Yu C, Zhou W, Sun Y, Liu M, Xue H, Hu L, Yan C, Xie X, Lin Z, Cao F, Mi B, Liu G. Antioxidant Therapy and Antioxidant-Related Bionanomaterials in Diabetic Wound Healing. Front Bioeng Biotechnol 2021;9:707479. [PMID: 34249895 DOI: 10.3389/fbioe.2021.707479] [Cited by in F6Publishing: 12] [Reference Citation Analysis]
192 Zhao X, Wang J, Deng Y, Liao L, Zhou M, Peng C, Li Y. Quercetin as a protective agent for liver diseases: A comprehensive descriptive review of the molecular mechanism. Phytother Res 2021. [PMID: 34159683 DOI: 10.1002/ptr.7104] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
193 Napoli E, Flores A, Mansuri Y, Hagerman RJ, Giulivi C. Sulforaphane improves mitochondrial metabolism in fibroblasts from patients with fragile X-associated tremor and ataxia syndrome. Neurobiol Dis 2021;157:105427. [PMID: 34153466 DOI: 10.1016/j.nbd.2021.105427] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
194 Zhu DD, Tan XM, Lu LQ, Yu SJ, Jian RL, Liang XF, Liao YX, Fan W, Barbier-Torres L, Yang A, Yang HP, Liu T. Interplay between nuclear factor erythroid 2-related factor 2 and inflammatory mediators in COVID-19-related liver injury. World J Gastroenterol 2021; 27(22): 2944-2962 [PMID: 34168400 DOI: 10.3748/wjg.v27.i22.2944] [Cited by in CrossRef: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
195 Jin S, Yang H, Jiao Y, Pang Q, Wang Y, Wang M, Shan A, Feng X. Dietary Curcumin Alleviated Acute Ileum Damage of Ducks (Anas platyrhynchos) Induced by AFB1 through Regulating Nrf2-ARE and NF-κB Signaling Pathways. Foods 2021;10:1370. [PMID: 34198498 DOI: 10.3390/foods10061370] [Cited by in Crossref: 2] [Cited by in F6Publishing: 18] [Article Influence: 2.0] [Reference Citation Analysis]
196 Beatty GL, Werba G, Lyssiotis CA, Simeone DM. The biological underpinnings of therapeutic resistance in pancreatic cancer. Genes Dev 2021;35:940-62. [PMID: 34117095 DOI: 10.1101/gad.348523.121] [Cited by in Crossref: 1] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
197 Li J, Cheng P, Li S, Zhao P, Han B, Ren X, Zhong JL, Lloyd MD, Pourzand C, Holmgren A, Lu J. Selenium Status in Diet Affects Acetaminophen-Induced Hepatotoxicity via Interruption of Redox Environment. Antioxidants & Redox Signaling 2021;34:1355-67. [DOI: 10.1089/ars.2019.7909] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 8.0] [Reference Citation Analysis]
198 Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. Curcumin Activates the Nrf2 Pathway and Induces Cellular Protection Against Oxidative Injury. Curr Mol Med 2020;20:116-33. [PMID: 31622191 DOI: 10.2174/1566524019666191016150757] [Cited by in Crossref: 24] [Cited by in F6Publishing: 45] [Article Influence: 24.0] [Reference Citation Analysis]
199 Giovinazzo D, Bursac B, Sbodio JI, Nalluru S, Vignane T, Snowman AM, Albacarys LM, Sedlak TW, Torregrossa R, Whiteman M, Filipovic MR, Snyder SH, Paul BD. Hydrogen sulfide is neuroprotective in Alzheimer's disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Proc Natl Acad Sci U S A 2021;118:e2017225118. [PMID: 33431651 DOI: 10.1073/pnas.2017225118] [Cited by in Crossref: 8] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
200 Cheng C, Yuan F, Chen XP, Zhang W, Zhao XL, Jiang ZP, Zhou HH, Zhou G, Cao S. Inhibition of Nrf2-mediated glucose metabolism by brusatol synergistically sensitizes acute myeloid leukemia to Ara-C. Biomed Pharmacother 2021;142:111652. [PMID: 34112534 DOI: 10.1016/j.biopha.2021.111652] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
201 Sivinski J, Zhang DD, Chapman E. Targeting NRF2 to treat cancer. Semin Cancer Biol 2021:S1044-579X(21)00171-1. [PMID: 34102289 DOI: 10.1016/j.semcancer.2021.06.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
202 Luu Quoc Q, Cao Thi Bich T, Kim SH, Park HS, Shin YS. Administration of vitamin E attenuates airway inflammation through restoration of Nrf2 in a mouse model of asthma. J Cell Mol Med 2021;25:6721-32. [PMID: 34089243 DOI: 10.1111/jcmm.16675] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
203 Mornata F, Pepe G, Sfogliarini C, Brunialti E, Rovati G, Locati M, Maggi A, Vegeto E. Reciprocal interference between the NRF2 and LPS signaling pathways on the immune-metabolic phenotype of peritoneal macrophages. Pharmacol Res Perspect 2020;8:e00638. [PMID: 32794353 DOI: 10.1002/prp2.638] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
204 Ashraf MAB, Zahid A, Ashraf S, Waquar S, Iqbal S, Malik A. Implication of Prophetic Variables and their Impulsive Interplay in CA Prostate Patients Experiencing Osteo-Metastasis. Anticancer Agents Med Chem 2020;20:2106-13. [PMID: 32718298 DOI: 10.2174/1871520620666200727094430] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
205 Behl T, Sharma A, Sharma L, Sehgal A, Singh S, Sharma N, Zengin G, Bungau S, Toma MM, Gitea D, Babes EE, Judea Pusta CT, Bumbu AG. Current Perspective on the Natural Compounds and Drug Delivery Techniques in Glioblastoma Multiforme. Cancers (Basel) 2021;13:2765. [PMID: 34199460 DOI: 10.3390/cancers13112765] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
206 Davuljigari CB, Ekuban FA, Zong C, Fergany AAM, Morikawa K, Ichihara G. Nrf2 Activation Attenuates Acrylamide-Induced Neuropathy in Mice. Int J Mol Sci 2021;22:5995. [PMID: 34206048 DOI: 10.3390/ijms22115995] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
207 Lin Q, Huang Z, Cai G, Fan X, Yan X, Liu Z, Zhao Z, Li J, Li J, Shi H, Kong M, Zheng MH, Conklin DJ, Epstein PN, Wintergerst KA, Mohammadi M, Cai L, Li X, Li Y, Tan Y. Activating Adenosine Monophosphate-Activated Protein Kinase Mediates Fibroblast Growth Factor 1 Protection From Nonalcoholic Fatty Liver Disease in Mice. Hepatology 2021;73:2206-22. [PMID: 32965675 DOI: 10.1002/hep.31568] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 16.0] [Reference Citation Analysis]
208 Howell L, Jenkins RE, Lynch S, Duckworth C, Kevin Park B, Goldring C. Proteomic profiling of murine biliary-derived hepatic organoids and their capacity for drug disposition, bioactivation and detoxification. Arch Toxicol 2021;95:2413-30. [PMID: 34050779 DOI: 10.1007/s00204-021-03075-3] [Reference Citation Analysis]
209 Nishida K, Watanabe H, Murata R, Tokumaru K, Fujimura R, Oshiro S, Nagasaki T, Miyahisa M, Hiramoto Y, Nosaki H, Imafuku T, Maeda H, Fukagawa M, Maruyama T. Recombinant Long-Acting Thioredoxin Ameliorates AKI to CKD Transition via Modulating Renal Oxidative Stress and Inflammation. Int J Mol Sci 2021;22:5600. [PMID: 34070521 DOI: 10.3390/ijms22115600] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
210 Zimmerman AW, Singh K, Connors SL, Liu H, Panjwani AA, Lee LC, Diggins E, Foley A, Melnyk S, Singh IN, James SJ, Frye RE, Fahey JW. Randomized controlled trial of sulforaphane and metabolite discovery in children with Autism Spectrum Disorder. Mol Autism 2021;12:38. [PMID: 34034808 DOI: 10.1186/s13229-021-00447-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
211 Wang P, Ni M, Tian Y, Wang H, Qiu J, You W, Wei S, Shi Y, Zhou J, Cheng F, Rao J, Lu L. Myeloid Nrf2 deficiency aggravates non-alcoholic steatohepatitis progression by regulating YAP-mediated NLRP3 inflammasome signaling. iScience 2021;24:102427. [PMID: 34041450 DOI: 10.1016/j.isci.2021.102427] [Reference Citation Analysis]
212 Meseguer-Ripolles J, Lucendo-Villarin B, Tucker C, Ferreira-Gonzalez S, Homer N, Wang Y, Starkey Lewis PJ, M Toledo E, Mellado-Gomez E, Simpson J, Flint O, Jaiswal H, Beer NL, Karlsen AE, Forbes SJ, Dear JW, Hughes J, Hay DC. Dimethyl fumarate reduces hepatocyte senescence following paracetamol exposure. iScience 2021;24:102552. [PMID: 34151225 DOI: 10.1016/j.isci.2021.102552] [Reference Citation Analysis]
213 Shaverdian N, Offin M, Shepherd AF, Simone CB 2nd, Gelblum DY, Wu AJ, Hellmann MD, Rimner A, Paik PK, Chaft JE, Gomez DR. The Impact of Durvalumab on Local-Regional Control in Stage III NSCLCs Treated With Chemoradiation and on KEAP1-NFE2L2-Mutant Tumors. J Thorac Oncol 2021;16:1392-402. [PMID: 33992811 DOI: 10.1016/j.jtho.2021.04.019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
214 Menshchikova EB, Kozhin PM, Chechushkov AV, Khrapova MV, Zenkov NK. The Oral Delivery of Water-Soluble Phenol TS-13 Ameliorates Granuloma Formation in an In Vivo Model of Tuberculous Granulomatous Inflammation. Oxid Med Cell Longev 2021;2021:6652775. [PMID: 34093961 DOI: 10.1155/2021/6652775] [Reference Citation Analysis]
215 Hsieh CH, Hsieh HC, Shih FS, Wang PW, Yang LX, Shieh DB, Wang YC. An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment. Theranostics 2021;11:7072-91. [PMID: 34093872 DOI: 10.7150/thno.57803] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 18.0] [Reference Citation Analysis]
216 Li S, Liu Y, Li J, Zhao X, Yu D. Mechanisms of Ferroptosis and Application to Head and Neck Squamous Cell Carcinoma Treatments. DNA Cell Biol 2021;40:720-32. [PMID: 33979530 DOI: 10.1089/dna.2021.0023] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
217 Bielawiec P, Harasim-Symbor E, Sztolsztener K, Konstantynowicz-Nowicka K, Chabowski A. Attenuation of Oxidative Stress and Inflammatory Response by Chronic Cannabidiol Administration Is Associated with Improved n-6/n-3 PUFA Ratio in the White and Red Skeletal Muscle in a Rat Model of High-Fat Diet-Induced Obesity. Nutrients 2021;13:1603. [PMID: 34064937 DOI: 10.3390/nu13051603] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
218 Hershberger KA, Rooney JP, Turner EA, Donoghue LJ, Bodhicharla R, Maurer LL, Ryde IT, Kim JJ, Joglekar R, Hibshman JD, Smith LL, Bhatt DP, Ilkayeva OR, Hirschey MD, Meyer JN. Early-life mitochondrial DNA damage results in lifelong deficits in energy production mediated by redox signaling in Caenorhabditis elegans. Redox Biol 2021;43:102000. [PMID: 33993056 DOI: 10.1016/j.redox.2021.102000] [Reference Citation Analysis]
219 Hung SW, Zhang R, Tan Z, Chung JPW, Zhang T, Wang CC. Pharmaceuticals targeting signaling pathways of endometriosis as potential new medical treatment: A review. Med Res Rev 2021;41:2489-564. [PMID: 33948974 DOI: 10.1002/med.21802] [Cited by in Crossref: 1] [Cited by in F6Publishing: 11] [Article Influence: 1.0] [Reference Citation Analysis]
220 Pan C, Chen Z, Li C, Han T, Liu H, Wang X. Sestrin2 as a gatekeeper of cellular homeostasis: Physiological effects for the regulation of hypoxia-related diseases. J Cell Mol Med 2021;25:5341-50. [PMID: 33942488 DOI: 10.1111/jcmm.16540] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
221 Lee H, Jose PA. Coordinated Contribution of NADPH Oxidase- and Mitochondria-Derived Reactive Oxygen Species in Metabolic Syndrome and Its Implication in Renal Dysfunction. Front Pharmacol 2021;12:670076. [PMID: 34017260 DOI: 10.3389/fphar.2021.670076] [Cited by in Crossref: 1] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
222 Stenvinkel P, Chertow GM, Devarajan P, Levin A, Andreoli SP, Bangalore S, Warady BA. Chronic Inflammation in Chronic Kidney Disease Progression: Role of Nrf2. Kidney Int Rep 2021;6:1775-87. [PMID: 34307974 DOI: 10.1016/j.ekir.2021.04.023] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
223 Song MY, Lee DY, Chun KS, Kim EH. The Role of NRF2/KEAP1 Signaling Pathway in Cancer Metabolism. Int J Mol Sci 2021;22:4376. [PMID: 33922165 DOI: 10.3390/ijms22094376] [Cited by in Crossref: 1] [Cited by in F6Publishing: 16] [Article Influence: 1.0] [Reference Citation Analysis]
224 Kutschat AP, Johnsen SA, Hamdan FH. Store-Operated Calcium Entry: Shaping the Transcriptional and Epigenetic Landscape in Pancreatic Cancer. Cells 2021;10:966. [PMID: 33919156 DOI: 10.3390/cells10050966] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
225 Sriramajayam K, Peng D, Lu H, Zhou S, Bhat N, McDonald OG, Que J, Zaika A, El-Rifai W. Activation of NRF2 by APE1/REF1 is redox-dependent in Barrett's related esophageal adenocarcinoma cells. Redox Biol 2021;43:101970. [PMID: 33887608 DOI: 10.1016/j.redox.2021.101970] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
226 Kankia IH, Paramasivan P, Elcombe M, Langdon SP, Deeni YY. Nuclear factor erythroid 2-related factor 2 modulates HER4 receptor in ovarian cancer cells to influence their sensitivity to tyrosine kinase inhibitors. Exploration of Targeted Anti-tumor Therapy. [DOI: 10.37349/etat.2021.00040] [Reference Citation Analysis]
227 Wang M, Lei M, Chang L, Xing Y, Guo Y, Pourzand C, Bartsch JW, Chen J, Luo J, WidyaKarisma V, Nisar MF, Lei X, Zhong JL. Bach2 regulates autophagy to modulate UVA-induced photoaging in skin fibroblasts. Free Radic Biol Med 2021;169:304-16. [PMID: 33882335 DOI: 10.1016/j.freeradbiomed.2021.04.003] [Reference Citation Analysis]
228 Bi F, Zhang Y, Liu W, Xie K. Sinomenine activation of Nrf2 signaling prevents inflammation and cerebral injury in a mouse model of ischemic stroke. Exp Ther Med 2021;21:647. [PMID: 33968178 DOI: 10.3892/etm.2021.10079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
229 Cai M, Tan R, Huang Y, Chen X, Kong Q, Guo K, Xu M. High Expression of Tomm34 and Its Correlations With Clinicopathology in Oral Squamous Cell Carcinoma. Pathol Oncol Res 2021;27:641042. [PMID: 34257607 DOI: 10.3389/pore.2021.641042] [Reference Citation Analysis]
230 Ekuban FA, Zong C, Takikawa M, Morikawa K, Sakurai T, Ichihara S, Itoh K, Yamamoto M, Ohsako S, Ichihara G. Genetic ablation of Nrf2 exacerbates neurotoxic effects of acrylamide in mice. Toxicology 2021;456:152785. [PMID: 33872730 DOI: 10.1016/j.tox.2021.152785] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
231 Niu Y, Zhang J, Dong M. Nrf2 as a potential target for Parkinson's disease therapy. J Mol Med (Berl) 2021;99:917-31. [PMID: 33844027 DOI: 10.1007/s00109-021-02071-5] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
232 Onoki T, Izumi Y, Takahashi M, Murakami S, Matsumaru D, Ohta N, Wati SM, Hatanaka N, Katsuoka F, Okutsu M, Yabe Y, Hagiwara Y, Kanzaki M, Bamba T, Itoi E, Motohashi H. Skeletal muscle-specific Keap1 disruption modulates fatty acid utilization and enhances exercise capacity in female mice. Redox Biol 2021;43:101966. [PMID: 33857757 DOI: 10.1016/j.redox.2021.101966] [Reference Citation Analysis]
233 Wang L, Chen X, Li X, Liu D, Wang X, Chang X, Guo Y. Developing a novel strategy for COPD therapy by targeting Nrf2 and metabolism reprogramming simultaneously. Free Radic Biol Med 2021;169:436-45. [PMID: 33812998 DOI: 10.1016/j.freeradbiomed.2021.03.039] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
234 Xue R, Qiu J, Wei S, Liu M, Wang Q, Wang P, Sha B, Wang H, Shi Y, Zhou J, Rao J, Lu L. Lycopene alleviates hepatic ischemia reperfusion injury via the Nrf2/HO-1 pathway mediated NLRP3 inflammasome inhibition in Kupffer cells. Ann Transl Med 2021;9:631. [PMID: 33987329 DOI: 10.21037/atm-20-7084] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
235 Cicalese SM, da Silva JF, Priviero F, Webb RC, Eguchi S, Tostes RC. Vascular Stress Signaling in Hypertension. Circ Res 2021;128:969-92. [PMID: 33793333 DOI: 10.1161/CIRCRESAHA.121.318053] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
236 Sohn E, Kim YJ, Kim JH, Jeong SJ. Ficus erecta Thunb Leaves Alleviate Memory Loss Induced by Scopolamine in Mice via Regulation of Oxidative Stress and Cholinergic System. Mol Neurobiol 2021;58:3665-76. [PMID: 33797061 DOI: 10.1007/s12035-021-02358-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
237 Shi Z, Zhang L, Zheng J, Sun H, Shao C. Ferroptosis: Biochemistry and Biology in Cancers. Front Oncol 2021;11:579286. [PMID: 33868986 DOI: 10.3389/fonc.2021.579286] [Cited by in Crossref: 1] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
238 Liu T, Lv YF, Zhao JL, You QD, Jiang ZY. Regulation of Nrf2 by phosphorylation: Consequences for biological function and therapeutic implications. Free Radic Biol Med 2021;168:129-41. [PMID: 33794311 DOI: 10.1016/j.freeradbiomed.2021.03.034] [Cited by in Crossref: 4] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
239 Mark KG, Rape M. Ubiquitin-dependent regulation of transcription in development and disease. EMBO Rep 2021;22:e51078. [PMID: 33779035 DOI: 10.15252/embr.202051078] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
240 Muri J, Feng Q, Wolleb H, Shamshiev A, Ebner C, Tortola L, Broz P, Carreira EM, Kopf M. Cyclopentenone Prostaglandins and Structurally Related Oxidized Lipid Species Instigate and Share Distinct Pro- and Anti-inflammatory Pathways. Cell Rep 2020;30:4399-4417.e7. [PMID: 32234476 DOI: 10.1016/j.celrep.2020.03.019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
241 Ordonez AA, Bullen CK, Villabona-Rueda AF, Thompson EA, Turner ML, Davis SL, Komm O, Powell JD, D'Alessio FR, Yolken RH, Jain SK, Jones-Brando L. Sulforaphane exhibits in vitro and in vivo antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses. bioRxiv 2021:2021. [PMID: 33791708 DOI: 10.1101/2021.03.25.437060] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
242 Valle MS, Russo C, Malaguarnera L. Protective role of vitamin D against oxidative stress in diabetic retinopathy. Diabetes Metab Res Rev. [DOI: 10.1002/dmrr.3447] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
243 Cheng Z, Li Y, Zhu X, Wang K, Ali Y, Shu W, Zhang T, Zhu L, Murray M, Zhou F. The Potential Application of Pentacyclic Triterpenoids in the Prevention and Treatment of Retinal Diseases. Planta Med 2021;87:511-27. [PMID: 33761574 DOI: 10.1055/a-1377-2596] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
244 Kövesi B, Kulcsár S, Cserháti M, Erdélyi M, Ancsin Z, Zándoki E, Mézes M, Balogh K. Modification of the effects of aflatoxin B1 on the glutathione system and its regulatory genes by zeolite. Acta Vet Hung 2021;69:23-30. [PMID: 33764891 DOI: 10.1556/004.2021.00002] [Reference Citation Analysis]
245 Yamashiro Y, Yanagisawa H. The molecular mechanism of mechanotransduction in vascular homeostasis and disease. Clin Sci (Lond) 2020;134:2399-418. [PMID: 32936305 DOI: 10.1042/CS20190488] [Cited by in Crossref: 9] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
246 Choi BH, Kim JM, Kwak MK. The multifaceted role of NRF2 in cancer progression and cancer stem cells maintenance. Arch Pharm Res 2021;44:263-80. [PMID: 33754307 DOI: 10.1007/s12272-021-01316-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 10] [Article Influence: 1.0] [Reference Citation Analysis]
247 Gupta A, Behl T, Sehgal A, Bhatia S, Jaglan D, Bungau S. Therapeutic potential of Nrf-2 pathway in the treatment of diabetic neuropathy and nephropathy. Mol Biol Rep 2021;48:2761-74. [PMID: 33754251 DOI: 10.1007/s11033-021-06257-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
248 Ross D, Siegel D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol 2021;41:101950. [PMID: 33774477 DOI: 10.1016/j.redox.2021.101950] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
249 Yue CF, Li LS, Ai L, Deng JK, Guo YM. sMicroRNA-28-5p acts as a metastasis suppressor in gastric cancer by targeting Nrf2. Exp Cell Res 2021;402:112553. [PMID: 33737068 DOI: 10.1016/j.yexcr.2021.112553] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
250 Firmino JP, Fernández-Alacid L, Vallejos-Vidal E, Salomón R, Sanahuja I, Tort L, Ibarz A, Reyes-López FE, Gisbert E. Carvacrol, Thymol, and Garlic Essential Oil Promote Skin Innate Immunity in Gilthead Seabream (Sparus aurata) Through the Multifactorial Modulation of the Secretory Pathway and Enhancement of Mucus Protective Capacity. Front Immunol 2021;12:633621. [PMID: 33777020 DOI: 10.3389/fimmu.2021.633621] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
251 Schmidlin CJ, Tian W, Dodson M, Chapman E, Zhang DD. FAM129B-dependent activation of NRF2 promotes an invasive phenotype in BRAF mutant melanoma cells. Mol Carcinog 2021;60:331-41. [PMID: 33684228 DOI: 10.1002/mc.23295] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
252 Oh D, Lee J, Kim E, Hwang SU, Yoon JD, Cai L, Kim M, Kim G, Choi H, Hyun SH. Effect of Interleukin-7 on In Vitro Maturation of Porcine Cumulus-Oocyte Complexes and Subsequent Developmental Potential after Parthenogenetic Activation. Animals (Basel) 2021;11:741. [PMID: 33800509 DOI: 10.3390/ani11030741] [Reference Citation Analysis]
253 Wang YR, Zhang XN, Meng FG, Zeng T. Targeting macrophage polarization by Nrf2 agonists for treating various xenobiotics-induced toxic responses. Toxicol Mech Methods 2021;31:334-42. [PMID: 33627030 DOI: 10.1080/15376516.2021.1894624] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
254 Vasconcelos LHC, Ferreira SRD, Silva MDCC, Ferreira PB, de Souza ILL, Cavalcante FA, da Silva BA. Uncovering the Role of Oxidative Imbalance in the Development and Progression of Bronchial Asthma. Oxid Med Cell Longev 2021;2021:6692110. [PMID: 33763174 DOI: 10.1155/2021/6692110] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
255 Albert-Garay JS, Riesgo-Escovar JR, Sánchez-Chávez G, Salceda R. Retinal Nrf2 expression in normal and early streptozotocin-diabetic rats. Neurochem Int 2021;145:105007. [PMID: 33675841 DOI: 10.1016/j.neuint.2021.105007] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
256 García-Arroyo FE, Gonzaga-Sánchez G, Tapia E, Muñoz-Jiménez I, Manterola-Romero L, Osorio-Alonso H, Arellano-Buendía AS, Pedraza-Chaverri J, Roncal-Jiménez CA, Lanaspa MA, Johnson RJ, Sánchez-Lozada LG. Osthol Ameliorates Kidney Damage and Metabolic Syndrome Induced by a High-Fat/High-Sugar Diet. Int J Mol Sci 2021;22:2431. [PMID: 33670975 DOI: 10.3390/ijms22052431] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
257 Novák D, Vrba J, Zatloukalová M, Roubalová L, Stolarczyk K, Dorčák V, Vacek J. Cysteamine assay for the evaluation of bioactive electrophiles. Free Radic Biol Med 2021;164:381-9. [PMID: 33429019 DOI: 10.1016/j.freeradbiomed.2021.01.007] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
258 Panieri E, Saso L. Inhibition of the NRF2/KEAP1 Axis: A Promising Therapeutic Strategy to Alter Redox Balance of Cancer Cells. Antioxid Redox Signal 2021;34:1428-83. [PMID: 33403898 DOI: 10.1089/ars.2020.8146] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
259 Kohandel Z, Farkhondeh T, Aschner M, Samarghandian S. Nrf2 a molecular therapeutic target for Astaxanthin. Biomed Pharmacother 2021;137:111374. [PMID: 33761600 DOI: 10.1016/j.biopha.2021.111374] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
260 Gran ER, Bertorelle F, Fakhouri H, Antoine R, Perić Bakulić M, Sanader Maršić Ž, Bonačić-Koutecký V, Blain M, Antel J, Maysinger D. Size and ligand effects of gold nanoclusters in alteration of organellar state and translocation of transcription factors in human primary astrocytes. Nanoscale 2021;13:3173-83. [PMID: 33527928 DOI: 10.1039/d0nr06401g] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
261 Li C, Xin H, Shi Y, Mu J. Glutaredoxin 2 protects cardiomyocytes from hypoxia/reoxygenation-induced injury by suppressing apoptosis, oxidative stress, and inflammation via enhancing Nrf2 signaling. Int Immunopharmacol 2021;94:107428. [PMID: 33581580 DOI: 10.1016/j.intimp.2021.107428] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
262 Amirova KM, Dimitrova PA, Marchev AS, Krustanova SV, Simova SD, Alipieva KI, Georgiev MI. Biotechnologically-Produced Myconoside and Calceolarioside E Induce Nrf2 Expression in Neutrophils. Int J Mol Sci 2021;22:1759. [PMID: 33578811 DOI: 10.3390/ijms22041759] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
263 Kozieł MJ, Kowalska K, Piastowska-Ciesielska AW. Nrf2: a main responsive element in cells to mycotoxin-induced toxicity. Arch Toxicol 2021;95:1521-33. [PMID: 33554281 DOI: 10.1007/s00204-021-02995-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
264 Ito M, Tanaka T, Nangaku M. Nuclear factor erythroid 2-related factor 2 as a treatment target of kidney diseases. Curr Opin Nephrol Hypertens 2020;29:128-35. [PMID: 31592832 DOI: 10.1097/MNH.0000000000000556] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 12.0] [Reference Citation Analysis]
265 Chen Y, Li Y, Huang L, Du Y, Gan F, Li Y, Yao Y. Antioxidative Stress: Inhibiting Reactive Oxygen Species Production as a Cause of Radioresistance and Chemoresistance. Oxid Med Cell Longev 2021;2021:6620306. [PMID: 33628367 DOI: 10.1155/2021/6620306] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
266 Fu Z, Kern TS, Hellström A, Smith LEH. Fatty acid oxidation and photoreceptor metabolic needs. J Lipid Res 2021;62:100035. [PMID: 32094231 DOI: 10.1194/jlr.TR120000618] [Cited by in Crossref: 4] [Cited by in F6Publishing: 25] [Article Influence: 4.0] [Reference Citation Analysis]
267 Juul-Nielsen C, Shen J, Stenvinkel P, Scholze A. Systematic review of the nuclear factor erythroid 2-related factor 2 (NRF2) system in human chronic kidney disease: alterations, interventions, and relation to morbidity. Nephrol Dial Transplant 2021:gfab031. [PMID: 33547785 DOI: 10.1093/ndt/gfab031] [Cited by in Crossref: 1] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
268 Korac B, Kalezic A, Pekovic-Vaughan V, Korac A, Jankovic A. Redox changes in obesity, metabolic syndrome, and diabetes. Redox Biol 2021;42:101887. [PMID: 33579666 DOI: 10.1016/j.redox.2021.101887] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
269 Miller WP, Sunilkumar S, Dennis MD. The stress response protein REDD1 as a causal factor for oxidative stress in diabetic retinopathy. Free Radic Biol Med 2021;165:127-36. [PMID: 33524531 DOI: 10.1016/j.freeradbiomed.2021.01.041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
270 Dehnad A, Fan W, Jiang JX, Fish SR, Li Y, Das S, Mozes G, Wong KA, Olson KA, Charville GW, Ali M, Török NJ. AGER1 downregulation associates with fibrosis in nonalcoholic steatohepatitis and type 2 diabetes. J Clin Invest 2020;130:4320-30. [PMID: 32657776 DOI: 10.1172/JCI133051] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
271 He Q, Luo Y, Xie Z. Sulforaphane ameliorates cadmium induced hepatotoxicity through the up-regulation of /Nrf2/ARE pathway and the inactivation of NF-κB. Journal of Functional Foods 2021;77:104297. [DOI: 10.1016/j.jff.2020.104297] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
272 Mak K, Shiming Z, Balijepalli MK, Dinkova-kostova AT, Epemolu O, Mohd Z, Pichika MR. Studies on the mechanism of anti-inflammatory action of swietenine, a tetranortriterpenoid isolated from Swietenia macrophylla seeds. Phytomedicine Plus 2021;1:100018. [DOI: 10.1016/j.phyplu.2020.100018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
273 Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT; International Natural Product Sciences Taskforce. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 2021;20:200-16. [PMID: 33510482 DOI: 10.1038/s41573-020-00114-z] [Cited by in Crossref: 655] [Cited by in F6Publishing: 517] [Article Influence: 655.0] [Reference Citation Analysis]
274 Najjar RS, Turner CG, Wong BJ, Feresin RG. Berry-Derived Polyphenols in Cardiovascular Pathologies: Mechanisms of Disease and the Role of Diet and Sex. Nutrients 2021;13:387. [PMID: 33513742 DOI: 10.3390/nu13020387] [Cited by in Crossref: 1] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
275 Arroyave-Ospina JC, Wu Z, Geng Y, Moshage H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants (Basel) 2021;10:174. [PMID: 33530432 DOI: 10.3390/antiox10020174] [Cited by in Crossref: 15] [Cited by in F6Publishing: 52] [Article Influence: 15.0] [Reference Citation Analysis]
276 Racaud-Sultan C, Vergnolle N. GSK3β, a Master Kinase in the Regulation of Adult Stem Cell Behavior. Cells 2021;10:225. [PMID: 33498808 DOI: 10.3390/cells10020225] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
277 Bou-Fakhredin R, Dia B, Ghadieh HE, Rivella S, Cappellini MD, Eid AA, Taher AT. CYP450 Mediates Reactive Oxygen Species Production in a Mouse Model of β-Thalassemia through an Increase in 20-HETE Activity. Int J Mol Sci 2021;22:1106. [PMID: 33498614 DOI: 10.3390/ijms22031106] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
278 Fock EM, Parnova RG. Protective Effect of Mitochondria-Targeted Antioxidants against Inflammatory Response to Lipopolysaccharide Challenge: A Review. Pharmaceutics 2021;13:144. [PMID: 33499252 DOI: 10.3390/pharmaceutics13020144] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
279 Zhou J, Qi C, Fang X, Wang Z, Zhang S, Li D, Song J. DJ-1 modulates Nrf2-mediated MRP1 expression by activating Wnt3a/β-catenin signalling in A549 cells exposed to cigarette smoke extract and LPS. Life Sci 2021;276:119089. [PMID: 33476627 DOI: 10.1016/j.lfs.2021.119089] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
280 De Pinto V. Renaissance of VDAC: New Insights on a Protein Family at the Interface between Mitochondria and Cytosol. Biomolecules 2021;11:107. [PMID: 33467485 DOI: 10.3390/biom11010107] [Cited by in Crossref: 8] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
281 Beeraka NM, Bovilla VR, Doreswamy SH, Puttalingaiah S, Srinivasan A, Madhunapantula SV. The Taming of Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) Deglycation by Fructosamine-3-Kinase (FN3K)-Inhibitors-A Novel Strategy to Combat Cancers. Cancers (Basel) 2021;13:281. [PMID: 33466626 DOI: 10.3390/cancers13020281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
282 Qi JH, Dong FX. The relevant targets of anti-oxidative stress: a review. J Drug Target 2021;29:677-86. [PMID: 33401976 DOI: 10.1080/1061186X.2020.1870987] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
283 Gu X, Liu Y, Wang N, Zhen J, Zhang B, Hou S, Cui Z, Wan Q, Feng H. Transcription of MRPL12 regulated by Nrf2 contributes to the mitochondrial dysfunction in diabetic kidney disease. Free Radic Biol Med 2021;164:329-40. [PMID: 33444714 DOI: 10.1016/j.freeradbiomed.2021.01.004] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
284 Wang X, Hu LP, Qin WT, Yang Q, Chen DY, Li Q, Zhou KX, Huang PQ, Xu CJ, Li J, Yao LL, Wang YH, Tian GA, Yang JY, Yang MW, Liu DJ, Sun YW, Jiang SH, Zhang XL, Zhang ZG. Identification of a subset of immunosuppressive P2RX1-negative neutrophils in pancreatic cancer liver metastasis. Nat Commun 2021;12:174. [PMID: 33420030 DOI: 10.1038/s41467-020-20447-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
285 Pillay Y, Ghazi T, Raghubeer S, Nagiah S, Chuturgoon AA. Patulin activates the NRF2 pathway by modulation of miR-144 expression in HEK293 cells. Mycotoxin Res 2021;37:97-103. [PMID: 33403569 DOI: 10.1007/s12550-020-00418-4] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
286 Antonucci S, Di Lisa F, Kaludercic N. Mitochondrial reactive oxygen species in physiology and disease. Cell Calcium 2021;94:102344. [PMID: 33556741 DOI: 10.1016/j.ceca.2020.102344] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
287 Câmara AB, Brandão IA. The relationship between vitamin D deficiency and oxidative stress can be independent of age and gender. International Journal for Vitamin and Nutrition Research 2021;91:108-23. [DOI: 10.1024/0300-9831/a000614] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
288 Tocmo R, Veenstra JP, Huang Y, Johnson JJ. Covalent Modification of Proteins by Plant-Derived Natural Products: Proteomic Approaches and Biological Impacts. Proteomics 2021;21:e1900386. [PMID: 32949481 DOI: 10.1002/pmic.201900386] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
289 Guerrero-Hue M, Rayego-Mateos S, Vázquez-Carballo C, Palomino-Antolín A, García-Caballero C, Opazo-Rios L, Morgado-Pascual JL, Herencia C, Mas S, Ortiz A, Rubio-Navarro A, Egea J, Villalba JM, Egido J, Moreno JA. Protective Role of Nrf2 in Renal Disease. Antioxidants (Basel) 2020;10:E39. [PMID: 33396350 DOI: 10.3390/antiox10010039] [Cited by in Crossref: 6] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
290 Liu X, Li M, Zhu J, Huang W, Song J. Sestrin2 protects against traumatic brain injury by reinforcing the activation of Nrf2 signaling. Hum Exp Toxicol 2021;40:1095-111. [PMID: 33375867 DOI: 10.1177/0960327120984224] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
291 Liu Y, Deng J, Fan D. G-Rh4 improves pancreatic β-cells dysfunction in vivo and in vitro by increased expression of Nrf2 and its target genes. Food Chem Toxicol 2021;148:111925. [PMID: 33359794 DOI: 10.1016/j.fct.2020.111925] [Cited by in Crossref: 2] [Article Influence: 1.0] [Reference Citation Analysis]
292 García-Arroyo FE, Tapia E, Muñoz-Jiménez I, Gonzaga-Sánchez G, Arellano-Buendía AS, Osorio-Alonso H, Manterola-Romero L, Roncal-Jiménez CA, Johnson RJ, Sánchez-Lozada LG. Fluid Intake Restriction Concomitant to Sweetened Beverages Hydration Induce Kidney Damage. Oxid Med Cell Longev 2020;2020:8850266. [PMID: 33354281 DOI: 10.1155/2020/8850266] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
293 Izadi M, Cegolon L, Javanbakht M, Sarafzadeh A, Abolghasemi H, Alishiri G, Zhao S, Einollahi B, Kashaki M, Jonaidi-Jafari N, Asadi M, Jafari R, Fathi S, Nikoueinejad H, Ebrahimi M, Imanizadeh S, Ghazale AH. Ozone therapy for the treatment of COVID-19 pneumonia: A scoping review. Int Immunopharmacol 2021;92:107307. [PMID: 33476982 DOI: 10.1016/j.intimp.2020.107307] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
294 Muri J, Kopf M. Redox regulation of immunometabolism. Nat Rev Immunol 2021;21:363-81. [PMID: 33340021 DOI: 10.1038/s41577-020-00478-8] [Cited by in Crossref: 23] [Cited by in F6Publishing: 83] [Article Influence: 11.5] [Reference Citation Analysis]
295 Xu J, Liu J, Li Q, Mi Y, Zhou D, Meng Q, Chen G, Li N, Hou Y. Pterostilbene Alleviates Aβ1-42 -Induced Cognitive Dysfunction via Inhibition of Oxidative Stress by Activating Nrf2 Signaling Pathway. Mol Nutr Food Res 2021;65:e2000711. [PMID: 33280250 DOI: 10.1002/mnfr.202000711] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
296 Padmavathi G, Ramkumar KM. MicroRNA mediated regulation of the major redox homeostasis switch, Nrf2, and its impact on oxidative stress-induced ischemic/reperfusion injury. Arch Biochem Biophys 2021;698:108725. [PMID: 33326800 DOI: 10.1016/j.abb.2020.108725] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
297 Xin Y, Zou L, Lang S. 4-Octyl itaconate (4-OI) attenuates lipopolysaccharide-induced acute lung injury by suppressing PI3K/Akt/NF-κB signaling pathways in mice. Exp Ther Med 2021;21:141. [PMID: 33456508 DOI: 10.3892/etm.2020.9573] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
298 Cvetko F, Caldwell ST, Higgins M, Suzuki T, Yamamoto M, Prag HA, Hartley RC, Dinkova-Kostova AT, Murphy MP. Nrf2 is activated by disruption of mitochondrial thiol homeostasis but not by enhanced mitochondrial superoxide production. J Biol Chem 2021;296:100169. [PMID: 33298526 DOI: 10.1074/jbc.RA120.016551] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
299 Seco-Cervera M, González-Cabo P, Pallardó FV, Romá-Mateo C, García-Giménez JL. Thioredoxin and Glutaredoxin Systems as Potential Targets for the Development of New Treatments in Friedreich's Ataxia. Antioxidants (Basel) 2020;9:E1257. [PMID: 33321938 DOI: 10.3390/antiox9121257] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
300 Rahban M, Habibi-Rezaei M, Mazaheri M, Saso L, Moosavi-Movahedi AA. Anti-Viral Potential and Modulation of Nrf2 by Curcumin: Pharmacological Implications. Antioxidants (Basel) 2020;9:E1228. [PMID: 33291560 DOI: 10.3390/antiox9121228] [Cited by in Crossref: 6] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
301 Spickett CM, Pitt AR. Modification of proteins by reactive lipid oxidation products and biochemical effects of lipoxidation. Essays Biochem 2020;64:19-31. [PMID: 31867621 DOI: 10.1042/EBC20190058] [Cited by in Crossref: 8] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
302 Robertson H, Dinkova-Kostova AT, Hayes JD. NRF2 and the Ambiguous Consequences of Its Activation during Initiation and the Subsequent Stages of Tumourigenesis. Cancers (Basel) 2020;12:E3609. [PMID: 33276631 DOI: 10.3390/cancers12123609] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 11.5] [Reference Citation Analysis]
303 Subramaniam MD, Iyer M, Nair AP, Venkatesan D, Mathavan S, Eruppakotte N, Kizhakkillach S, Chandran MK, Roy A, Gopalakrishnan AV, Vellingiri B. Oxidative stress and mitochondrial transfer: A new dimension towards ocular diseases. Genes & Diseases 2020. [DOI: 10.1016/j.gendis.2020.11.020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
304 Yu R, Wen S, Wang Q, Wang C, Zhang L, Wu X, Li J, Kong L. Mulberroside A repairs high fructose diet-induced damage of intestinal epithelial and blood-brain barriers in mice: A potential for preventing hippocampal neuroinflammatory injury. J Neurochem 2021;157:1979-91. [PMID: 33205422 DOI: 10.1111/jnc.15242] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
305 Zhao J, Lin X, Meng D, Zeng L, Zhuang R, Huang S, Lv W, Hu J. Nrf2 Mediates Metabolic Reprogramming in Non-Small Cell Lung Cancer. Front Oncol 2020;10:578315. [PMID: 33324555 DOI: 10.3389/fonc.2020.578315] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
306 Song S, Gao Y, Sheng Y, Rui T, Luo C. Targeting NRF2 to suppress ferroptosis in brain injury. Histol Histopathol 2021;36:383-97. [PMID: 33242213 DOI: 10.14670/HH-18-286] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
307 Braud L, Pini M, Stec DF, Manin S, Derumeaux G, Stec DE, Foresti R, Motterlini R. Increased Sirt1 secreted from visceral white adipose tissue is associated with improved glucose tolerance in obese Nrf2-deficient mice. Redox Biol 2021;38:101805. [PMID: 33285413 DOI: 10.1016/j.redox.2020.101805] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
308 Ferrari M, Zevini A, Palermo E, Muscolini M, Alexandridi M, Etna MP, Coccia EM, Fernandez-Sesma A, Coyne C, Zhang DD, Marques ETA, Olagnier D, Hiscott J. Dengue Virus Targets Nrf2 for NS2B3-Mediated Degradation Leading to Enhanced Oxidative Stress and Viral Replication. J Virol 2020;94:e01551-20. [PMID: 32999020 DOI: 10.1128/JVI.01551-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 13] [Article Influence: 2.0] [Reference Citation Analysis]
309 Wang Y, Kang Y, Qi C, Zhang T, Zhao H, Ji X, Yan W, Huang Y, Cui R, Zhang G, Shi G. Pentoxifylline enhances antioxidative capability and promotes mitochondrial biogenesis for improving age-related behavioral deficits. Aging (Albany NY) 2020;12:25487-504. [PMID: 33231568 DOI: 10.18632/aging.104155] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
310 Di Francesco A, Choi Y, Bernier M, Zhang Y, Diaz-Ruiz A, Aon MA, Kalafut K, Ehrlich MR, Murt K, Ali A, Pearson KJ, Levan S, Preston JD, Martin-Montalvo A, Martindale JL, Abdelmohsen K, Michel CR, Willmes DM, Henke C, Navas P, Villalba JM, Siegel D, Gorospe M, Fritz K, Biswal S, Ross D, de Cabo R. NQO1 protects obese mice through improvements in glucose and lipid metabolism. NPJ Aging Mech Dis 2020;6:13. [PMID: 33298924 DOI: 10.1038/s41514-020-00051-6] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
311 Mok DZL, Chan CYY, Ooi EE, Chan KR. The effects of aging on host resistance and disease tolerance to SARS-CoV-2 infection. FEBS J 2021;288:5055-70. [PMID: 33124149 DOI: 10.1111/febs.15613] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
312 Fu S, Luo X, Wu X, Zhang T, Gu L, Wang Y, Gao M, Cheng Y, Xie Z. Activation of the Melanocortin-1 Receptor by NDP-MSH Attenuates Oxidative Stress and Neuronal Apoptosis through PI3K/Akt/Nrf2 Pathway after Intracerebral Hemorrhage in Mice. Oxid Med Cell Longev 2020;2020:8864100. [PMID: 33274009 DOI: 10.1155/2020/8864100] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
313 Jimenez-Moreno N, Lane JD. Autophagy and Redox Homeostasis in Parkinson's: A Crucial Balancing Act. Oxid Med Cell Longev 2020;2020:8865611. [PMID: 33224433 DOI: 10.1155/2020/8865611] [Cited by in Crossref: 3] [Cited by in F6Publishing: 12] [Article Influence: 1.5] [Reference Citation Analysis]
314 O'Brien J, Wendell SG. Electrophile Modulation of Inflammation: A Two-Hit Approach. Metabolites 2020;10:E453. [PMID: 33182676 DOI: 10.3390/metabo10110453] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
315 Rastogi A, Severance EG, Jacobs HM, Conlin SM, Islam ST, Timme-Laragy AR. Modulating glutathione thiol status alters pancreatic β-cell morphogenesis in the developing zebrafish (Danio rerio) embryo. Redox Biol 2021;38:101788. [PMID: 33321464 DOI: 10.1016/j.redox.2020.101788] [Reference Citation Analysis]
316 Valente de Souza L, Hoffmann A, Weiss G. Impact of bacterial infections on erythropoiesis. Expert Rev Anti Infect Ther 2021;19:619-33. [PMID: 33092423 DOI: 10.1080/14787210.2021.1841636] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
317 Zhuo MQ, Lv WH, Xu YH, Luo Z. Isolation and Characterization of Three Sodium-Phosphate Cotransporter Genes and Their Transcriptional Regulation in the Grass Carp Ctenopharyngodon idella. Int J Mol Sci 2020;21:E8228. [PMID: 33153158 DOI: 10.3390/ijms21218228] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
318 Bose C, Alves I, Singh P, Palade PT, Carvalho E, Børsheim E, Jun SR, Cheema A, Boerma M, Awasthi S, Singh SP. Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling. Aging Cell 2020;19:e13261. [PMID: 33067900 DOI: 10.1111/acel.13261] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 13.0] [Reference Citation Analysis]
319 Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free Radical Biology and Medicine 2020;159:87-102. [DOI: 10.1016/j.freeradbiomed.2020.06.028] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 5.5] [Reference Citation Analysis]
320 Abrescia P, Treppiccione L, Rossi M, Bergamo P. Modulatory role of dietary polyunsaturated fatty acids in Nrf2-mediated redox homeostasis. Progress in Lipid Research 2020;80:101066. [DOI: 10.1016/j.plipres.2020.101066] [Cited by in Crossref: 2] [Cited by in F6Publishing: 15] [Article Influence: 1.0] [Reference Citation Analysis]
321 Pauletto M, Giantin M, Tolosi R, Bassan I, Barbarossa A, Zaghini A, Dacasto M. Curcumin Mitigates AFB1-Induced Hepatic Toxicity by Triggering Cattle Antioxidant and Anti-inflammatory Pathways: A Whole Transcriptomic In Vitro Study. Antioxidants (Basel) 2020;9:E1059. [PMID: 33137966 DOI: 10.3390/antiox9111059] [Cited by in Crossref: 4] [Cited by in F6Publishing: 15] [Article Influence: 2.0] [Reference Citation Analysis]
322 Thyrsted J, Holm CK. Virus-induced metabolic reprogramming and innate sensing hereof by the infected host. Curr Opin Biotechnol 2021;68:44-50. [PMID: 33113498 DOI: 10.1016/j.copbio.2020.10.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
323 Silva A, Pereira M, Carrascal MA, Brites G, Neves B, Moreira P, Resende R, Silva MM, Santos AE, Pereira C, Cruz MT. Calcium Modulation, Anti-Oxidant and Anti-Inflammatory Effect of Skin Allergens Targeting the Nrf2 Signaling Pathway in Alzheimer's Disease Cellular Models. Int J Mol Sci 2020;21:E7791. [PMID: 33096789 DOI: 10.3390/ijms21207791] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
324 DeBlasi JM, DeNicola GM. Dissecting the Crosstalk between NRF2 Signaling and Metabolic Processes in Cancer. Cancers (Basel) 2020;12:E3023. [PMID: 33080927 DOI: 10.3390/cancers12103023] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
325 Yang F, Chen R. Sestrin1 exerts a cytoprotective role against oxygen-glucose deprivation/reoxygenation-induced neuronal injury by potentiating Nrf2 activation via the modulation of Keap1. Brain Res 2021;1750:147165. [PMID: 33069734 DOI: 10.1016/j.brainres.2020.147165] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
326 Hudlikar R, Wang L, Wu R, Li S, Peter R, Shannar A, Chou PJ, Liu X, Liu Z, Kuo HD, Kong AN. Epigenetics/Epigenomics and Prevention of Early Stages of Cancer by Isothiocyanates. Cancer Prev Res (Phila) 2021;14:151-64. [PMID: 33055265 DOI: 10.1158/1940-6207.CAPR-20-0217] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
327 Ding Z, Wu X, Wang Y, Ji S, Zhang W, Kang J, Li J, Fei G. Melatonin prevents LPS-induced epithelial-mesenchymal transition in human alveolar epithelial cells via the GSK-3β/Nrf2 pathway. Biomed Pharmacother 2020;132:110827. [PMID: 33065391 DOI: 10.1016/j.biopha.2020.110827] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
328 Galicia-Moreno M, Lucano-Landeros S, Monroy-Ramirez HC, Silva-Gomez J, Gutierrez-Cuevas J, Santos A, Armendariz-Borunda J. Roles of Nrf2 in Liver Diseases: Molecular, Pharmacological, and Epigenetic Aspects. Antioxidants (Basel) 2020;9:E980. [PMID: 33066023 DOI: 10.3390/antiox9100980] [Cited by in Crossref: 10] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
329 L Suraweera T, Rupasinghe HPV, Dellaire G, Xu Z. Regulation of Nrf2/ARE Pathway by Dietary Flavonoids: A Friend or Foe for Cancer Management? Antioxidants (Basel) 2020;9:E973. [PMID: 33050575 DOI: 10.3390/antiox9100973] [Cited by in Crossref: 17] [Cited by in F6Publishing: 40] [Article Influence: 8.5] [Reference Citation Analysis]
330 Zinghirino F, Pappalardo XG, Messina A, Guarino F, De Pinto V. Is the secret of VDAC Isoforms in their gene regulation? Characterization of human VDAC genes expression profile, promoter activity, and transcriptional regulators. Int J Mol Sci 2020;21:E7388. [PMID: 33036380 DOI: 10.3390/ijms21197388] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
331 Solar Fernandez V, Cipolletti M, Ascenzi P, Marino M, Fiocchetti M. Neuroglobin As Key Mediator in the 17β-Estradiol-Induced Antioxidant Cell Response to Oxidative Stress. Antioxid Redox Signal 2020;32:217-27. [PMID: 31686530 DOI: 10.1089/ars.2019.7870] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
332 Knatko EV, Tatham MH, Zhang Y, Castro C, Higgins M, Dayalan Naidu S, Leonardi C, de la Vega L, Honda T, Griffin JL, Hay RT, Dinkova-Kostova AT. Downregulation of Keap1 Confers Features of a Fasted Metabolic State. iScience 2020;23:101638. [PMID: 33103077 DOI: 10.1016/j.isci.2020.101638] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 2.5] [Reference Citation Analysis]
333 Si Z, Wang X. The Neuroprotective and Neurodegeneration Effects of Heme Oxygenase-1 in Alzheimer's Disease. J Alzheimers Dis 2020;78:1259-72. [PMID: 33016915 DOI: 10.3233/JAD-200720] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
334 Tsai TH, Lin SH, Wu CH, Tsai YC, Yang SF, Lin CL. Mechanisms and therapeutic implications of RTA 408, an activator of Nrf2, in subarachnoid hemorrhage-induced delayed cerebral vasospasm and secondary brain injury. PLoS One 2020;15:e0240122. [PMID: 33017422 DOI: 10.1371/journal.pone.0240122] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
335 Mozzini C. Progeria, atherosclerosis and clonal hematopoiesis: links and future perspectives. Mech Ageing Dev 2020;192:111365. [PMID: 33007346 DOI: 10.1016/j.mad.2020.111365] [Reference Citation Analysis]
336 Olagnier D, Farahani E, Thyrsted J, Blay-Cadanet J, Herengt A, Idorn M, Hait A, Hernaez B, Knudsen A, Iversen MB, Schilling M, Jørgensen SE, Thomsen M, Reinert LS, Lappe M, Hoang HD, Gilchrist VH, Hansen AL, Ottosen R, Nielsen CG, Møller C, van der Horst D, Peri S, Balachandran S, Huang J, Jakobsen M, Svenningsen EB, Poulsen TB, Bartsch L, Thielke AL, Luo Y, Alain T, Rehwinkel J, Alcamí A, Hiscott J, Mogensen TH, Paludan SR, Holm CK. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat Commun 2020;11:4938. [PMID: 33009401 DOI: 10.1038/s41467-020-18764-3] [Cited by in Crossref: 58] [Cited by in F6Publishing: 126] [Article Influence: 29.0] [Reference Citation Analysis]
337 Sobolev AS. The Delivery of Biologically Active Agents into the Nuclei of Target Cells for the Purposes of Translational Medicine. Acta Naturae 2020;12:47-56. [PMID: 33456977 DOI: 10.32607/actanaturae.11049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
338 Silva DVTD, Baião DDS, Ferreira VF, Paschoalin VMF. Betanin as a multipath oxidative stress and inflammation modulator: a beetroot pigment with protective effects on cardiovascular disease pathogenesis. Crit Rev Food Sci Nutr 2020;:1-16. [PMID: 32997545 DOI: 10.1080/10408398.2020.1822277] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
339 López-Grueso MJ, Lagal DJ, García-Jiménez ÁF, Tarradas RM, Carmona-Hidalgo B, Peinado J, Requejo-Aguilar R, Bárcena JA, Padilla CA. Knockout of PRDX6 induces mitochondrial dysfunction and cell cycle arrest at G2/M in HepG2 hepatocarcinoma cells. Redox Biol 2020;37:101737. [PMID: 33035814 DOI: 10.1016/j.redox.2020.101737] [Cited by in Crossref: 3] [Cited by in F6Publishing: 13] [Article Influence: 1.5] [Reference Citation Analysis]
340 Rooney JP, Chorley B, Hiemstra S, Wink S, Wang X, Bell DA, van de Water B, Corton JC. Mining a human transcriptome database for chemical modulators of NRF2. PLoS One 2020;15:e0239367. [PMID: 32986742 DOI: 10.1371/journal.pone.0239367] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
341 Campelj DG, Debruin DA, Timpani CA, Hayes A, Goodman CA, Rybalka E. Sodium nitrate co-supplementation does not exacerbate low dose metronomic doxorubicin-induced cachexia in healthy mice. Sci Rep 2020;10:15044. [PMID: 32973229 DOI: 10.1038/s41598-020-71974-z] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
342 Gao L, Kumar V, Vellichirammal NN, Park SY, Rudebush TL, Yu L, Son WM, Pekas EJ, Wafi AM, Hong J, Xiao P, Guda C, Wang HJ, Schultz HD, Zucker IH. Functional, proteomic and bioinformatic analyses of Nrf2- and Keap1- null skeletal muscle. J Physiol 2020;598:5427-51. [PMID: 32893883 DOI: 10.1113/JP280176] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
343 Khadrawy O, Gebremedhn S, Salilew-Wondim D, Rings F, Neuhoff C, Hoelker M, Schellander K, Tesfaye D. Quercetin supports bovine preimplantation embryo development under oxidative stress condition via activation of the Nrf2 signalling pathway. Reprod Domest Anim 2020;55:1275-85. [PMID: 32323384 DOI: 10.1111/rda.13688] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
344 Kothari D, Lee WD, Kim SK. Allium Flavonols: Health Benefits, Molecular Targets, and Bioavailability. Antioxidants (Basel) 2020;9:E888. [PMID: 32961762 DOI: 10.3390/antiox9090888] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 8.0] [Reference Citation Analysis]
345 Payandeh Z, Pirpour Tazehkand A, Barati G, Pouremamali F, Kahroba H, Baradaran B, Samadi N. Role of Nrf2 and mitochondria in cancer stem cells; in carcinogenesis, tumor progression, and chemoresistance. Biochimie. 2020;179:32-45. [PMID: 32946993 DOI: 10.1016/j.biochi.2020.09.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
346 Chen HC, Yip T, Lee JK, Juliani J, Sernia C, Hill AF, Lavidis NA, Spiers JG. Restraint Stress Alters Expression of Glucocorticoid Bioavailability Mediators, Suppresses Nrf2, and Promotes Oxidative Stress in Liver Tissue. Antioxidants (Basel) 2020;9:E853. [PMID: 32932938 DOI: 10.3390/antiox9090853] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
347 Zhou H, Hu L, Zhang H, Shan W, Wang Y, Li X, Liu T, Zhao J, You Q, Jiang Z. Design, Synthesis, and Structure–Activity Relationships of Indoline-Based Kelch-like ECH-Associated Protein 1-Nuclear Factor (Erythroid-Derived 2)-Like 2 (Keap1-Nrf2) Protein–Protein Interaction Inhibitors. J Med Chem 2020;63:11149-68. [DOI: 10.1021/acs.jmedchem.0c01116] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
348 Lewis JH, Jadoul M, Block GA, Chin MP, Ferguson DA, Goldsberry A, Meyer CJ, O'Grady M, Pergola PE, Reisman SA, Wigley WC, Chertow GM. Effects of Bardoxolone Methyl on Hepatic Enzymes in Patients with Type 2 Diabetes Mellitus and Stage 4 CKD. Clin Transl Sci 2021;14:299-309. [PMID: 32860734 DOI: 10.1111/cts.12868] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
349 Ruíz-salinas AK, Vázquez-roque RA, Díaz A, Pulido G, Treviño S, Floran B, Flores G. The treatment of Goji berry (Lycium barbarum) improves the neuroplasticity of the prefrontal cortex and hippocampus in aged rats. The Journal of Nutritional Biochemistry 2020;83:108416. [DOI: 10.1016/j.jnutbio.2020.108416] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
350 Cen Y, Zou X, Li L, Chen S, Lin Y, Liu L, Zheng S. Inhibition of the glutathione biosynthetic pathway increases phytochemical toxicity to Spodoptera litura and Nilaparvata lugens. Pesticide Biochemistry and Physiology 2020;168:104632. [DOI: 10.1016/j.pestbp.2020.104632] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
351 Jones LM, Chen Y, van Oosten-hawle P. Redefining proteostasis transcription factors in organismal stress responses, development, metabolism, and health. Biological Chemistry 2020;401:1005-18. [DOI: 10.1515/hsz-2019-0385] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
352 Huang Q, Feng L, Li H, Zheng L, Qi X, Wang Y, Feng Q, Liu Z, Liu X, Lu L. Jian-Pi-Bu-Xue-Formula Alleviates Cyclophosphamide-Induced Myelosuppression via Up-Regulating NRF2/HO1/NQO1 Signaling. Front Pharmacol 2020;11:1302. [PMID: 32982732 DOI: 10.3389/fphar.2020.01302] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
353 Gunderson JT, Peppriell AE, Vorojeikina D, Rand MD. Tissue-specific Nrf2 signaling protects against methylmercury toxicity in Drosophila neuromuscular development. Arch Toxicol 2020;94:4007-22. [PMID: 32816092 DOI: 10.1007/s00204-020-02879-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
354 D'Este F, Della Pietra E, Badillo Pazmay GV, Xodo LE, Rapozzi V. Role of nitric oxide in the response to photooxidative stress in prostate cancer cells. Biochem Pharmacol 2020;182:114205. [PMID: 32828802 DOI: 10.1016/j.bcp.2020.114205] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
355 Anoz-Carbonell E, Timson DJ, Pey AL, Medina M. The Catalytic Cycle of the Antioxidant and Cancer-Associated Human NQO1 Enzyme: Hydride Transfer, Conformational Dynamics and Functional Cooperativity. Antioxidants (Basel) 2020;9:E772. [PMID: 32825392 DOI: 10.3390/antiox9090772] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
356 Arczewska KD, Krasuska W, Stachurska A, Karpińska K, Sikorska J, Kiedrowski M, Lange D, Stępień T, Czarnocka B. hMTH1 and GPX1 expression in human thyroid tissue is interrelated to prevent oxidative DNA damage. DNA Repair (Amst) 2020;95:102954. [PMID: 32877752 DOI: 10.1016/j.dnarep.2020.102954] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
357 Poh J, Ponsford AH, Boyd J, Woodsmith J, Stelzl U, Wanker E, Harper N, MacEwan D, Sanderson CM. A functionally defined high-density NRF2 interactome reveals new conditional regulators of ARE transactivation. Redox Biol 2020;37:101686. [PMID: 32911434 DOI: 10.1016/j.redox.2020.101686] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
358 Zhang Y, Zhao S, Fu Y, Yan L, Feng Y, Chen Y, Wu Y, Deng Y, Zhang G, Chen Z, Chen Y, Liu T. Computational repositioning of dimethyl fumarate for treating alcoholic liver disease. Cell Death Dis 2020;11:641. [PMID: 32811823 DOI: 10.1038/s41419-020-02890-3] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
359 Gautam P, Kaur G, Tandon A, Sharma A, Bhatnagar A. Altered redox regulation by Nrf2-Keap1 system in dendritic cells of systemic lupus erythematosus patients. Lupus 2020;29:1544-55. [PMID: 32811277 DOI: 10.1177/0961203320950022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
360 Dos Santos Maia M, Rodrigues GCS, de Sousa NF, Scotti MT, Scotti L, Mendonça-Junior FJB. Identification of New Targets and the Virtual Screening of Lignans against Alzheimer's Disease. Oxid Med Cell Longev 2020;2020:3098673. [PMID: 32879651 DOI: 10.1155/2020/3098673] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
361 Fagiani F, Catanzaro M, Buoso E, Basagni F, Di Marino D, Raniolo S, Amadio M, Frost EH, Corsini E, Racchi M, Fulop T, Govoni S, Rosini M, Lanni C. Targeting Cytokine Release Through the Differential Modulation of Nrf2 and NF-κB Pathways by Electrophilic/Non-Electrophilic Compounds. Front Pharmacol 2020;11:1256. [PMID: 32922294 DOI: 10.3389/fphar.2020.01256] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
362 Mucha SG, Ferrarini MG, Moraga C, Di Genova A, Guyon L, Tardy F, Rome S, Sagot MF, Zaha A. Mycoplasma hyopneumoniae J elicits an antioxidant response and decreases the expression of ciliary genes in infected swine epithelial cells. Sci Rep 2020;10:13707. [PMID: 32792522 DOI: 10.1038/s41598-020-70040-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
363 Nguyen VT, Bian L, Tamaoki J, Otsubo S, Muratani M, Kawahara A, Kobayashi M. Generation and characterization of keap1a- and keap1b-knockout zebrafish. Redox Biol 2020;36:101667. [PMID: 32828016 DOI: 10.1016/j.redox.2020.101667] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
364 Rosenmai AK, Winge SB, Möller M, Lundqvist J, Wedebye EB, Nikolov NG, Lilith Johansson HK, Vinggaard AM. Organophosphate ester flame retardants have antiandrogenic potential and affect other endocrine related endpoints in vitro and in silico. Chemosphere 2021;263:127703. [PMID: 32854002 DOI: 10.1016/j.chemosphere.2020.127703] [Cited by in Crossref: 5] [Cited by in F6Publishing: 13] [Article Influence: 2.5] [Reference Citation Analysis]
365 Han S, Zhuang H, Lee PY, Li M, Yang L, Nigrovic PA, Reeves WH. NF-E2-Related Factor 2 Regulates Interferon Receptor Expression and Alters Macrophage Polarization in Lupus. Arthritis Rheumatol 2020;72:1707-20. [PMID: 32500632 DOI: 10.1002/art.41383] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
366 Yagishita Y, Gatbonton-Schwager TN, McCallum ML, Kensler TW. Current Landscape of NRF2 Biomarkers in Clinical Trials. Antioxidants (Basel) 2020;9:E716. [PMID: 32784785 DOI: 10.3390/antiox9080716] [Cited by in Crossref: 10] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
367 Rosito M, Testi C, Parisi G, Cortese B, Baiocco P, Di Angelantonio S. Exploring the Use of Dimethyl Fumarate as Microglia Modulator for Neurodegenerative Diseases Treatment. Antioxidants (Basel) 2020;9:E700. [PMID: 32756501 DOI: 10.3390/antiox9080700] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
368 Zevini A, Ferrari M, Olagnier D, Hiscott J. Dengue virus infection and Nrf2 regulation of oxidative stress. Current Opinion in Virology 2020;43:35-40. [DOI: 10.1016/j.coviro.2020.07.015] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
369 Liu Z, Han K, Huo X, Yan B, Gao M, Lv X, Yu P, Gao G, Chang Y. Nrf2 knockout dysregulates iron metabolism and increases the hemolysis through ROS in aging mice. Life Sciences 2020;255:117838. [DOI: 10.1016/j.lfs.2020.117838] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
370 Khalaf M, Scott-Ward T, Causer A, Saynor Z, Shepherd A, Górecki D, Lewis A, Laight D, Shute J. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in Human Lung Microvascular Endothelial Cells Controls Oxidative Stress, Reactive Oxygen-Mediated Cell Signaling and Inflammatory Responses. Front Physiol 2020;11:879. [PMID: 32848840 DOI: 10.3389/fphys.2020.00879] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
371 Zhu YP, Zheng Z, Xiang Y, Zhang Y. Glucose Starvation-Induced Rapid Death of Nrf1α-Deficient, but Not Nrf2-Deficient, Hepatoma Cells Results from Its Fatal Defects in the Redox Metabolism Reprogramming. Oxid Med Cell Longev 2020;2020:4959821. [PMID: 32774674 DOI: 10.1155/2020/4959821] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
372 Mendonca P, Soliman KFA. Flavonoids Activation of the Transcription Factor Nrf2 as a Hypothesis Approach for the Prevention and Modulation of SARS-CoV-2 Infection Severity. Antioxidants (Basel) 2020;9:E659. [PMID: 32722164 DOI: 10.3390/antiox9080659] [Cited by in Crossref: 22] [Cited by in F6Publishing: 39] [Article Influence: 11.0] [Reference Citation Analysis]
373 Kavalappa YP, Gopal SS, Ponesakki G. Lutein inhibits breast cancer cell growth by suppressing antioxidant and cell survival signals and induces apoptosis. J Cell Physiol 2021;236:1798-809. [PMID: 32710479 DOI: 10.1002/jcp.29961] [Cited by in Crossref: 2] [Cited by in F6Publishing: 13] [Article Influence: 1.0] [Reference Citation Analysis]
374 Yang H, Kuhn C, Kolben T, Ma Z, Lin P, Mahner S, Jeschke U, von Schönfeldt V. Early Life Oxidative Stress and Long-Lasting Cardiovascular Effects on Offspring Conceived by Assisted Reproductive Technologies: A Review. Int J Mol Sci 2020;21:E5175. [PMID: 32707756 DOI: 10.3390/ijms21155175] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
375 Loxham M, Woo J, Singhania A, Smithers NP, Yeomans A, Packham G, Crainic AM, Cook RB, Cassee FR, Woelk CH, Davies DE. Upregulation of epithelial metallothioneins by metal-rich ultrafine particulate matter from an underground railway. Metallomics 2020;12:1070-82. [PMID: 32297622 DOI: 10.1039/d0mt00014k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
376 Kremslehner C, Miller A, Nica R, Nagelreiter IM, Narzt MS, Golabi B, Vorstandlechner V, Mildner M, Lachner J, Tschachler E, Ferrara F, Klavins K, Schosserer M, Grillari J, Haschemi A, Gruber F. Imaging of metabolic activity adaptations to UV stress, drugs and differentiation at cellular resolution in skin and skin equivalents - Implications for oxidative UV damage. Redox Biol 2020;37:101583. [PMID: 32713735 DOI: 10.1016/j.redox.2020.101583] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
377 Bento-Pereira C, Dinkova-Kostova AT. Activation of transcription factor Nrf2 to counteract mitochondrial dysfunction in Parkinson's disease. Med Res Rev 2021;41:785-802. [PMID: 32681666 DOI: 10.1002/med.21714] [Cited by in Crossref: 7] [Cited by in F6Publishing: 24] [Article Influence: 3.5] [Reference Citation Analysis]
378 Aghdam SY, Kenchegowda D, Sharma NK, Holmes-Hampton GP, Legesse B, Moroni M, Ghosh SP. Dysregulated Cardiac IGF-1 Signaling and Antioxidant Response Are Associated with Radiation Sensitivity. Int J Mol Sci 2020;21:E5049. [PMID: 32708958 DOI: 10.3390/ijms21145049] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
379 Li R, Zhang P, Wang Y, Tao K. Itaconate: A Metabolite Regulates Inflammation Response and Oxidative Stress. Oxid Med Cell Longev 2020;2020:5404780. [PMID: 32724492 DOI: 10.1155/2020/5404780] [Cited by in Crossref: 3] [Cited by in F6Publishing: 16] [Article Influence: 1.5] [Reference Citation Analysis]
380 Kang TC. Nuclear Factor-Erythroid 2-Related Factor 2 (Nrf2) and Mitochondrial Dynamics/Mitophagy in Neurological Diseases. Antioxidants (Basel) 2020;9:E617. [PMID: 32679689 DOI: 10.3390/antiox9070617] [Cited by in Crossref: 31] [Cited by in F6Publishing: 28] [Article Influence: 15.5] [Reference Citation Analysis]
381 García-Heredia JM, Carnero A. Role of Mitochondria in Cancer Stem Cell Resistance. Cells 2020;9:E1693. [PMID: 32679735 DOI: 10.3390/cells9071693] [Cited by in Crossref: 15] [Cited by in F6Publishing: 24] [Article Influence: 7.5] [Reference Citation Analysis]
382 Farias-Pereira R, Zhang Z, Park CS, Kim D, Kim KH, Park Y. Butein inhibits lipogenesis in Caenorhabditis elegans. Biofactors 2020;46:777-87. [PMID: 32663368 DOI: 10.1002/biof.1667] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
383 Cuadrado A, Pajares M, Benito C, Jiménez-Villegas J, Escoll M, Fernández-Ginés R, Garcia Yagüe AJ, Lastra D, Manda G, Rojo AI, Dinkova-Kostova AT. Can Activation of NRF2 Be a Strategy against COVID-19? Trends Pharmacol Sci 2020;41:598-610. [PMID: 32711925 DOI: 10.1016/j.tips.2020.07.003] [Cited by in Crossref: 54] [Cited by in F6Publishing: 54] [Article Influence: 27.0] [Reference Citation Analysis]
384 Pirpour Tazehkand A, Salehi R, Velaei K, Samadi N. The potential impact of trigonelline loaded micelles on Nrf2 suppression to overcome oxaliplatin resistance in colon cancer cells. Mol Biol Rep 2020;47:5817-29. [PMID: 32661875 DOI: 10.1007/s11033-020-05650-w] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
385 Shen T, Shang Y, Wu Q, Ren H. The protective effect of trilobatin against isoflurane-induced neurotoxicity in mouse hippocampal neuronal HT22 cells involves the Nrf2/ARE pathway. Toxicology 2020;442:152537. [PMID: 32663520 DOI: 10.1016/j.tox.2020.152537] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
386 Gugliandolo A, Bramanti P, Mazzon E. Activation of Nrf2 by Natural Bioactive Compounds: A Promising Approach for Stroke? Int J Mol Sci 2020;21:E4875. [PMID: 32664226 DOI: 10.3390/ijms21144875] [Cited by in Crossref: 11] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
387 Jasmer KJ, Hou J, Mannino P, Cheng J, Hannink M. Heme oxygenase promotes B-Raf-dependent melanosphere formation. Pigment Cell Melanoma Res 2020;33:850-68. [PMID: 32558263 DOI: 10.1111/pcmr.12905] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
388 Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell 2020;38:167-97. [PMID: 32649885 DOI: 10.1016/j.ccell.2020.06.001] [Cited by in Crossref: 140] [Cited by in F6Publishing: 137] [Article Influence: 70.0] [Reference Citation Analysis]
389 Zang H, Mathew RO, Cui T. The Dark Side of Nrf2 in the Heart. Front Physiol 2020;11:722. [PMID: 32733266 DOI: 10.3389/fphys.2020.00722] [Cited by in Crossref: 4] [Cited by in F6Publishing: 24] [Article Influence: 2.0] [Reference Citation Analysis]
390 He F, Ru X, Wen T. NRF2, a Transcription Factor for Stress Response and Beyond. Int J Mol Sci 2020;21:E4777. [PMID: 32640524 DOI: 10.3390/ijms21134777] [Cited by in Crossref: 64] [Cited by in F6Publishing: 149] [Article Influence: 32.0] [Reference Citation Analysis]
391 Mou Y, Wen S, Li YX, Gao XX, Zhang X, Jiang ZY. Recent progress in Keap1-Nrf2 protein-protein interaction inhibitors. Eur J Med Chem 2020;202:112532. [PMID: 32668381 DOI: 10.1016/j.ejmech.2020.112532] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
392 Lossow K, Kopp JF, Schwarz M, Finke H, Winkelbeiner N, Renko K, Meçi X, Ott C, Alker W, Hackler J, Grune T, Schomburg L, Haase H, Schwerdtle T, Kipp AP. Aging affects sex- and organ-specific trace element profiles in mice. Aging (Albany NY) 2020;12:13762-90. [PMID: 32620712 DOI: 10.18632/aging.103572] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
393 Jiang X, Zu L, Wang Z, Cheng Y, Yang Y, Wu X. Micro-algal astaxanthin could improve the antioxidant capability, immunity and ammonia resistance of juvenile Chinese mitten crab, Eriocheir sinensis. Fish & Shellfish Immunology 2020;102:499-510. [DOI: 10.1016/j.fsi.2020.05.021] [Cited by in Crossref: 8] [Cited by in F6Publishing: 23] [Article Influence: 4.0] [Reference Citation Analysis]
394 Yang L, Li X, Jiang A, Li X, Chang W, Chen J, Ye F. Metformin alleviates lead-induced mitochondrial fragmentation via AMPK/Nrf2 activation in SH-SY5Y cells. Redox Biol 2020;36:101626. [PMID: 32863218 DOI: 10.1016/j.redox.2020.101626] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 7.0] [Reference Citation Analysis]
395 Bayliak MM, Demianchuk OI, Gospodaryov DV, Abrat OB, Lylyk MP, Storey KB, Lushchak VI. Mutations in genes cnc or dKeap1 modulate stress resistance and metabolic processes in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2020;248:110746. [PMID: 32579905 DOI: 10.1016/j.cbpa.2020.110746] [Reference Citation Analysis]
396 Zhang L, Lv S, Liu Y, Yang L, Liang P, Gao X. Cellular Redox-Related Transcription Factor Nrf2 Mediation of HaTrf Response to Host Plant Allelochemical 2-Tridecanone in Helicoverpa armigera. J Agric Food Chem 2020;68:6919-26. [PMID: 32463694 DOI: 10.1021/acs.jafc.0c02080] [Reference Citation Analysis]
397 Dayalan Naidu S, Dinkova-Kostova AT. KEAP1, a cysteine-based sensor and a drug target for the prevention and treatment of chronic disease. Open Biol 2020;10:200105. [PMID: 32574549 DOI: 10.1098/rsob.200105] [Cited by in Crossref: 19] [Cited by in F6Publishing: 30] [Article Influence: 9.5] [Reference Citation Analysis]
398 Gong M, Li Y, Ye X, Zhang L, Wang Z, Xu X, Shen Y, Zheng C. Loss-of-function mutations in KEAP1 drive lung cancer progression via KEAP1/NRF2 pathway activation. Cell Commun Signal 2020;18:98. [PMID: 32576270 DOI: 10.1186/s12964-020-00568-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
399 Song H, Xu T, Feng X, Lai Y, Yang Y, Zheng H, He X, Wei G, Liao W, Liao Y, Zhong L, Bin J. Itaconate prevents abdominal aortic aneurysm formation through inhibiting inflammation via activation of Nrf2. EBioMedicine 2020;57:102832. [PMID: 32574955 DOI: 10.1016/j.ebiom.2020.102832] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
400 Kim SY, Chae CW, Lee HJ, Jung YH, Choi GE, Kim JS, Lim JR, Lee JE, Cho JH, Park H, Park C, Han HJ. Sodium butyrate inhibits high cholesterol-induced neuronal amyloidogenesis by modulating NRF2 stabilization-mediated ROS levels: involvement of NOX2 and SOD1. Cell Death Dis 2020;11:469. [PMID: 32555166 DOI: 10.1038/s41419-020-2663-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 16] [Article Influence: 3.0] [Reference Citation Analysis]
401 Jin M, Feng H, Wang Y, Yan S, Shen B, Li Z, Qin H, Wang Q, Li J, Liu G. Gentiopicroside Ameliorates Oxidative Stress and Lipid Accumulation through Nuclear Factor Erythroid 2-Related Factor 2 Activation. Oxid Med Cell Longev 2020;2020:2940746. [PMID: 32655764 DOI: 10.1155/2020/2940746] [Cited by in Crossref: 2] [Cited by in F6Publishing: 12] [Article Influence: 1.0] [Reference Citation Analysis]
402 Mani BK, Osborne-Lawrence S, Metzger N, Zigman JM. Lowering oxidative stress in ghrelin cells stimulates ghrelin secretion. Am J Physiol Endocrinol Metab 2020;319:E330-7. [PMID: 32543942 DOI: 10.1152/ajpendo.00119.2020] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
403 Liu M, Jiang X, Chen A, Chen T, Cheng Y, Wu X. Transcriptome analysis reveals the potential mechanism of dietary carotenoids improving antioxidative capability and immunity of juvenile Chinese mitten crabs Eriocheir sinensis. Fish Shellfish Immunol 2020;104:359-73. [PMID: 32553983 DOI: 10.1016/j.fsi.2020.06.033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
404 Godoy PRDV, Pour Khavari A, Rizzo M, Sakamoto-Hojo ET, Haghdoost S. Targeting NRF2, Regulator of Antioxidant System, to Sensitize Glioblastoma Neurosphere Cells to Radiation-Induced Oxidative Stress. Oxid Med Cell Longev 2020;2020:2534643. [PMID: 32617133 DOI: 10.1155/2020/2534643] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
405 Cores Á, Piquero M, Villacampa M, León R, Menéndez JC. NRF2 Regulation Processes as a Source of Potential Drug Targets against Neurodegenerative Diseases. Biomolecules 2020;10:E904. [PMID: 32545924 DOI: 10.3390/biom10060904] [Cited by in Crossref: 15] [Cited by in F6Publishing: 25] [Article Influence: 7.5] [Reference Citation Analysis]
406 Ali M, Bonay M, Vanhee V, Vinit S, Deramaudt TB. Comparative effectiveness of 4 natural and chemical activators of Nrf2 on inflammation, oxidative stress, macrophage polarization, and bactericidal activity in an in vitro macrophage infection model. PLoS One 2020;15:e0234484. [PMID: 32511271 DOI: 10.1371/journal.pone.0234484] [Cited by in Crossref: 7] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
407 Vasileva LV, Savova MS, Amirova KM, Dinkova-kostova AT, Georgiev MI. Obesity and NRF2-mediated cytoprotection: Where is the missing link? Pharmacological Research 2020;156:104760. [DOI: 10.1016/j.phrs.2020.104760] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 11.5] [Reference Citation Analysis]
408 Nabih HK. Crosstalk between NRF2 and Dicer through metastasis regulating MicroRNAs; mir-34a, mir-200 family and mir-103/107 family. Archives of Biochemistry and Biophysics 2020;686:108326. [DOI: 10.1016/j.abb.2020.108326] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
409 Ong AJ, Saeidi S, Chi NHK, Kim SJ, Kim DH, Kim SH, Park SA, Cha YN, Na HK, Surh YJ. The positive feedback loop between Nrf2 and phosphogluconate dehydrogenase stimulates proliferation and clonogenicity of human hepatoma cells. Free Radic Res 2020;54:906-17. [PMID: 32336239 DOI: 10.1080/10715762.2020.1761547] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
410 Zhang J, Zhou R, Xiang C, Jia Q, Wu H, Yang H. Huangbai Liniment Accelerated Wound Healing by Activating Nrf2 Signaling in Diabetes. Oxid Med Cell Longev 2020;2020:4951820. [PMID: 32566084 DOI: 10.1155/2020/4951820] [Cited by in Crossref: 2] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
411 Lungu-Mitea S, Lundqvist J. Potentials and pitfalls of transient in vitro reporter bioassays: interference by vector geometry and cytotoxicity in recombinant zebrafish cell lines. Arch Toxicol 2020;94:2769-84. [PMID: 32447522 DOI: 10.1007/s00204-020-02783-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
412 Reszka E, Lesicka M, Wieczorek E, Jabłońska E, Janasik B, Stępnik M, Konecki T, Jabłonowski Z. Dysregulation of Redox Status in Urinary Bladder Cancer Patients. Cancers (Basel) 2020;12:E1296. [PMID: 32455559 DOI: 10.3390/cancers12051296] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
413 Wang M, Pu D, Zhao Y, Chen J, Zhu S, Lu A, Liao Z, Sun Y, Xiao Q. Sulforaphane protects against skeletal muscle dysfunction in spontaneous type 2 diabetic db/db mice. Life Sci 2020;255:117823. [PMID: 32445760 DOI: 10.1016/j.lfs.2020.117823] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 0.5] [Reference Citation Analysis]
414 Panieri E, Telkoparan-Akillilar P, Suzen S, Saso L. The NRF2/KEAP1 Axis in the Regulation of Tumor Metabolism: Mechanisms and Therapeutic Perspectives. Biomolecules. 2020;10:791. [PMID: 32443774 DOI: 10.3390/biom10050791] [Cited by in Crossref: 16] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
415 Castiglione GM, Xu Z, Zhou L, Duh EJ. Adaptation of the master antioxidant response connects metabolism, lifespan and feather development pathways in birds. Nat Commun 2020;11:2476. [PMID: 32424161 DOI: 10.1038/s41467-020-16129-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
416 Lu YS, Jiang Y, Yuan JP, Jiang SB, Yang Y, Zhu PY, Sun YZ, Qi RQ, Liu T, Wang HX, Wu Y, Gao XH, Chen HD. UVA Induced Oxidative Stress Was Inhibited by Paeoniflorin/Nrf2 Signaling or PLIN2. Front Pharmacol 2020;11:736. [PMID: 32499710 DOI: 10.3389/fphar.2020.00736] [Cited by in Crossref: 5] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
417 Vargas-Mendoza N, Morales-González Á, Morales-Martínez M, Soriano-Ursúa MA, Delgado-Olivares L, Sandoval-Gallegos EM, Madrigal-Bujaidar E, Álvarez-González I, Madrigal-Santillán E, Morales-Gonzalez JA. Flavolignans from Silymarin as Nrf2 Bioactivators and Their Therapeutic Applications. Biomedicines 2020;8:E122. [PMID: 32423098 DOI: 10.3390/biomedicines8050122] [Cited by in Crossref: 17] [Cited by in F6Publishing: 13] [Article Influence: 8.5] [Reference Citation Analysis]
418 Zhang DD, Chapman E. The role of natural products in revealing NRF2 function. Nat Prod Rep 2020;37:797-826. [PMID: 32400766 DOI: 10.1039/c9np00061e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 29] [Article Influence: 6.5] [Reference Citation Analysis]
419 Wang N, Yang W, Li L, Tian M. MEF2D upregulation protects neurons from oxygen-glucose deprivation/re-oxygenation-induced injury by enhancing Nrf2 activation. Brain Res 2020;1741:146878. [PMID: 32407713 DOI: 10.1016/j.brainres.2020.146878] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
420 Andreadou I, Schulz R, Papapetropoulos A, Turan B, Ytrehus K, Ferdinandy P, Daiber A, Di Lisa F. The role of mitochondrial reactive oxygen species, NO and H2 S in ischaemia/reperfusion injury and cardioprotection. J Cell Mol Med 2020;24:6510-22. [PMID: 32383522 DOI: 10.1111/jcmm.15279] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 12.5] [Reference Citation Analysis]
421 Yun HR, Jo YH, Kim J, Shin Y, Kim SS, Choi TG. Roles of Autophagy in Oxidative Stress. Int J Mol Sci 2020;21:E3289. [PMID: 32384691 DOI: 10.3390/ijms21093289] [Cited by in Crossref: 24] [Cited by in F6Publishing: 66] [Article Influence: 12.0] [Reference Citation Analysis]
422 Majeed M, Majeed S, Nagabhushanam K, Lawrence L, Mundkur L. Novel Combinatorial Regimen of Garcinol and Curcuminoids for Non-alcoholic Steatohepatitis (NASH) in Mice. Sci Rep 2020;10:7440. [PMID: 32366854 DOI: 10.1038/s41598-020-64293-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
423 Pardo M, Qiu X, Zimmermann R, Rudich Y. Particulate Matter Toxicity Is Nrf2 and Mitochondria Dependent: The Roles of Metals and Polycyclic Aromatic Hydrocarbons. Chem Res Toxicol 2020;33:1110-20. [PMID: 32302097 DOI: 10.1021/acs.chemrestox.0c00007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
424 Kang JS, Nam LB, Yoo OK, Keum YS. Molecular mechanisms and systemic targeting of NRF2 dysregulation in cancer. Biochem Pharmacol 2020;177:114002. [PMID: 32360363 DOI: 10.1016/j.bcp.2020.114002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
425 Wu Z, Shi P, Lim HK, Ma Y, Setyawati MI, Bitounis D, Demokritou P, Ng KW, Tay CY. Inflammation Increases Susceptibility of Human Small Airway Epithelial Cells to Pneumonic Nanotoxicity. Small 2020;16:e2000963. [PMID: 32338442 DOI: 10.1002/smll.202000963] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
426 Song J, Meng Y, Wang M, Li L, Liu Z, Zheng K, Wu L, Liu B, Hou F, Li A. Mangiferin activates Nrf2 to attenuate cardiac fibrosis via redistributing glutaminolysis-derived glutamate. Pharmacol Res 2020;157:104845. [PMID: 32353588 DOI: 10.1016/j.phrs.2020.104845] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
427 Smith RE. The Effects of Dietary Supplements that Overactivate the Nrf2/ARE System. CMC 2020;27:2077-94. [DOI: 10.2174/0929867326666190517113533] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
428 Song X, Long D. Nrf2 and Ferroptosis: A New Research Direction for Neurodegenerative Diseases. Front Neurosci 2020;14:267. [PMID: 32372896 DOI: 10.3389/fnins.2020.00267] [Cited by in Crossref: 33] [Cited by in F6Publishing: 102] [Article Influence: 16.5] [Reference Citation Analysis]
429 Miller WP, Sunilkumar S, Giordano JF, Toro AL, Barber AJ, Dennis MD. The stress response protein REDD1 promotes diabetes-induced oxidative stress in the retina by Keap1-independent Nrf2 degradation. J Biol Chem 2020;295:7350-61. [PMID: 32295843 DOI: 10.1074/jbc.RA120.013093] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
430 Lim J, Heo J, Ju H, Shin JW, Kim Y, Lee S, Yu HY, Ryu CM, Yun H, Song S, Hong KS, Chung HM, Kim HR, Roe JS, Choi K, Kim IG, Jeong EM, Shin DM. Glutathione dynamics determine the therapeutic efficacy of mesenchymal stem cells for graft-versus-host disease via CREB1-NRF2 pathway. Sci Adv 2020;6:eaba1334. [PMID: 32490200 DOI: 10.1126/sciadv.aba1334] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
431 Poganik JR, Van Hall-Beauvais AK, Long MJC, Disare MT, Zhao Y, Aye Y. The mRNA-Binding Protein HuR Is a Kinetically-Privileged Electrophile Sensor. Helv Chim Acta 2020;103:e2000041. [PMID: 34113045 DOI: 10.1002/hlca.202000041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
432 Aussem A, Ludwig K. The Potential for Reducing Lynch Syndrome Cancer Risk with Nutritional Nrf2 Activators. Nutr Cancer 2021;73:404-19. [PMID: 32281399 DOI: 10.1080/01635581.2020.1751215] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
433 Abilev SK, Sviridova DA, Grebenyuk AN, Igonina EV, Smirnova SV. Study of the Prooxidant and Antioxidant Activity of Anti-Radiation Agents with LUX-Biosensors. Biol Bull Russ Acad Sci 2019;46:1646-56. [DOI: 10.1134/s106235901912001x] [Reference Citation Analysis]
434 Zhang J, Zhou R, Xiang C, Fan F, Gao J, Zhang Y, Tang S, Xu H, Yang H. Enhanced thioredoxin, glutathione and Nrf2 antioxidant systems by safflower extract and aceglutamide attenuate cerebral ischaemia/reperfusion injury. J Cell Mol Med 2020;24:4967-80. [PMID: 32266795 DOI: 10.1111/jcmm.15099] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
435 Fan Y, Xing Y, Xiong L, Wang J. Sestrin2 overexpression alleviates hydrogen peroxide-induced apoptosis and oxidative stress in retinal ganglion cells by enhancing Nrf2 activation via Keap1 downregulation. Chem Biol Interact 2020;324:109086. [PMID: 32275923 DOI: 10.1016/j.cbi.2020.109086] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
436 González R, Rodríguez-Hernández MA, Negrete M, Ranguelova K, Rossin A, Choya-Foces C, Cruz-Ojeda P, Miranda-Vizuete A, Martínez-Ruiz A, Rius-Pérez S, Sastre J, Bárcena JA, Hueber AO, Padilla CA, Muntané J. Downregulation of thioredoxin-1-dependent CD95 S-nitrosation by Sorafenib reduces liver cancer. Redox Biol 2020;34:101528. [PMID: 32388267 DOI: 10.1016/j.redox.2020.101528] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
437 Zhang Y, Shi Z, Zhou Y, Xiao Q, Wang H, Peng Y. Emerging Substrate Proteins of Kelch-like ECH Associated Protein 1 (Keap1) and Potential Challenges for the Development of Small-Molecule Inhibitors of the Keap1-Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Protein–Protein Interaction. J Med Chem 2020;63:7986-8002. [DOI: 10.1021/acs.jmedchem.9b01865] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
438 El Ali Z, Ollivier A, Manin S, Rivard M, Motterlini R, Foresti R. Therapeutic effects of CO-releaser/Nrf2 activator hybrids (HYCOs) in the treatment of skin wound, psoriasis and multiple sclerosis. Redox Biol 2020;34:101521. [PMID: 32335359 DOI: 10.1016/j.redox.2020.101521] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
439 Strathearn LS, Stepanov AI, Font-Burgada J. Inflammation in Primary and Metastatic Liver Tumorigenesis-Under the Influence of Alcohol and High-Fat Diets. Nutrients 2020;12:E933. [PMID: 32230953 DOI: 10.3390/nu12040933] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
440 Smolková K, Mikó E, Kovács T, Leguina-Ruzzi A, Sipos A, Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid Redox Signal 2020;33:966-97. [PMID: 31989830 DOI: 10.1089/ars.2020.8024] [Cited by in Crossref: 27] [Cited by in F6Publishing: 23] [Article Influence: 13.5] [Reference Citation Analysis]
441 Bocci F, Tripathi SC, Vilchez Mercedes SA, George JT, Casabar JP, Wong PK, Hanash SM, Levine H, Onuchic JN, Jolly MK. NRF2 activates a partial epithelial-mesenchymal transition and is maximally present in a hybrid epithelial/mesenchymal phenotype. Integr Biol (Camb) 2019;11:251-63. [PMID: 31329868 DOI: 10.1093/intbio/zyz021] [Cited by in Crossref: 48] [Cited by in F6Publishing: 51] [Article Influence: 24.0] [Reference Citation Analysis]
442 Han C, Liu Y, Dai R, Ismail N, Su W, Li B. Ferroptosis and Its Potential Role in Human Diseases. Front Pharmacol 2020;11:239. [PMID: 32256352 DOI: 10.3389/fphar.2020.00239] [Cited by in Crossref: 47] [Cited by in F6Publishing: 82] [Article Influence: 23.5] [Reference Citation Analysis]
443 Qiu J, Dando O, Febery JA, Fowler JH, Chandran S, Hardingham GE. Neuronal Activity and Its Role in Controlling Antioxidant Genes. Int J Mol Sci 2020;21:E1933. [PMID: 32178355 DOI: 10.3390/ijms21061933] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
444 Choi EJ, Jeon SM. NRF2-driven redox metabolism takes center stage in cancer metabolism from an outside-in perspective. Arch Pharm Res 2020;43:321-36. [PMID: 32130657 DOI: 10.1007/s12272-020-01224-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
445 Liu X, Fan L, Lu C, Yin S, Hu H. Functional Role of p53 in the Regulation of Chemical-Induced Oxidative Stress. Oxid Med Cell Longev 2020;2020:6039769. [PMID: 32190175 DOI: 10.1155/2020/6039769] [Cited by in Crossref: 6] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
446 Manda G, Rojo AI, Martínez-Klimova E, Pedraza-Chaverri J, Cuadrado A. Nordihydroguaiaretic Acid: From Herbal Medicine to Clinical Development for Cancer and Chronic Diseases. Front Pharmacol 2020;11:151. [PMID: 32184727 DOI: 10.3389/fphar.2020.00151] [Cited by in Crossref: 7] [Cited by in F6Publishing: 19] [Article Influence: 3.5] [Reference Citation Analysis]
447 Yang G, Wang F, Wang Y, Yu X, Yang S, Xu H, Xing J. Protective effect of tanshinone IIA on H2O2-induced oxidative stress injury in rat cardiomyocytes by activating Nrf2 pathway. J Recept Signal Transduct Res 2020;40:264-72. [PMID: 32100629 DOI: 10.1080/10799893.2020.1731535] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
448 Hu Y, Huang J, Li Y, Jiang L, Ouyang Y, Li Y, Yang L, Zhao X, Huang L, Xiang H, Chen J, Zeng Q. Cistanche deserticola polysaccharide induces melanogenesis in melanocytes and reduces oxidative stress via activating NRF2/HO-1 pathway. J Cell Mol Med 2020;24:4023-35. [PMID: 32096914 DOI: 10.1111/jcmm.15038] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
449 Panieri E, Buha A, Telkoparan-Akillilar P, Cevik D, Kouretas D, Veskoukis A, Skaperda Z, Tsatsakis A, Wallace D, Suzen S, Saso L. Potential Applications of NRF2 Modulators in Cancer Therapy. Antioxidants (Basel) 2020;9:E193. [PMID: 32106613 DOI: 10.3390/antiox9030193] [Cited by in F6Publishing: 54] [Reference Citation Analysis]
450 Arefin S, Buchanan S, Hobson S, Steinmetz J, Alsalhi S, Shiels PG, Kublickiene K, Stenvinkel P. Nrf2 in early vascular ageing: Calcification, senescence and therapy. Clin Chim Acta 2020;505:108-18. [PMID: 32097628 DOI: 10.1016/j.cca.2020.02.026] [Cited by in Crossref: 22] [Cited by in F6Publishing: 30] [Article Influence: 11.0] [Reference Citation Analysis]
451 Gusev EY, Zotova NV. Cellular Stress and General Pathological Processes. Curr Pharm Des 2019;25:251-97. [PMID: 31198111 DOI: 10.2174/1381612825666190319114641] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
452 Serreli G, Deiana M. Extra Virgin Olive Oil Polyphenols: Modulation of Cellular Pathways Related to Oxidant Species and Inflammation in Aging. Cells 2020;9:E478. [PMID: 32093046 DOI: 10.3390/cells9020478] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 15.5] [Reference Citation Analysis]
453 Riedelberger M, Penninger P, Tscherner M, Seifert M, Jenull S, Brunnhofer C, Scheidl B, Tsymala I, Bourgeois C, Petryshyn A, Glaser W, Limbeck A, Strobl B, Weiss G, Kuchler K. Type I Interferon Response Dysregulates Host Iron Homeostasis and Enhances Candida glabrata Infection. Cell Host Microbe 2020;27:454-466.e8. [PMID: 32075740 DOI: 10.1016/j.chom.2020.01.023] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
454 Wei Y, Lu M, Mei M, Wang H, Han Z, Chen M, Yao H, Song N, Ding X, Ding J, Xiao M, Hu G. Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection. Nat Commun 2020;11:941. [PMID: 32071304 DOI: 10.1038/s41467-020-14788-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 38] [Article Influence: 8.0] [Reference Citation Analysis]
455 Rowan S, Jiang S, Chang ML, Volkin J, Cassalman C, Smith KM, Streeter MD, Spiegel DA, Moreira-Neto C, Rabbani N, Thornalley PJ, Smith DE, Waheed NK, Taylor A. A low glycemic diet protects disease-prone Nrf2-deficient mice against age-related macular degeneration. Free Radic Biol Med 2020;150:75-86. [PMID: 32068111 DOI: 10.1016/j.freeradbiomed.2020.02.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
456 Liu P, Dodson M, Fang D, Chapman E, Zhang DD. NRF2 negatively regulates primary ciliogenesis and hedgehog signaling. PLoS Biol 2020;18:e3000620. [PMID: 32053600 DOI: 10.1371/journal.pbio.3000620] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 4.5] [Reference Citation Analysis]
457 Dou M, Jiao YH, Zheng JW, Zhang G, Li HY, Liu JS, Yang WD. De novo transcriptome analysis of the mussel Perna viridis after exposure to the toxic dinoflagellate Prorocentrum lima. Ecotoxicol Environ Saf 2020;192:110265. [PMID: 32045784 DOI: 10.1016/j.ecoenv.2020.110265] [Cited by in Crossref: 7] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
458 Poganik JR, Aye Y. Electrophile Signaling and Emerging Immuno- and Neuro-modulatory Electrophilic Pharmaceuticals. Front Aging Neurosci 2020;12:1. [PMID: 32116644 DOI: 10.3389/fnagi.2020.00001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 15] [Article Influence: 4.5] [Reference Citation Analysis]
459 Cherkas A, Holota S, Mdzinarashvili T, Gabbianelli R, Zarkovic N. Glucose as a Major Antioxidant: When, What for and Why It Fails? Antioxidants (Basel) 2020;9:E140. [PMID: 32033390 DOI: 10.3390/antiox9020140] [Cited by in Crossref: 19] [Cited by in F6Publishing: 30] [Article Influence: 9.5] [Reference Citation Analysis]
460 Patel V, Dial K, Wu J, Gauthier AG, Wu W, Lin M, Espey MG, Thomas DD, Ashby CR Jr, Mantell LL. Dietary Antioxidants Significantly Attenuate Hyperoxia-Induced Acute Inflammatory Lung Injury by Enhancing Macrophage Function via Reducing the Accumulation of Airway HMGB1. Int J Mol Sci 2020;21:E977. [PMID: 32024151 DOI: 10.3390/ijms21030977] [Cited by in Crossref: 22] [Cited by in F6Publishing: 34] [Article Influence: 11.0] [Reference Citation Analysis]
461 Liu C, Zhao Y, Wang J, Yang Y, Zhang Y, Qu X, Peng S, Yao Z, Zhao S, He B, Mi Q, Zhu Y, Liu X, Zou J, Zhang X, Du Q. FoxO3 reverses 5-fluorouracil resistance in human colorectal cancer cells by inhibiting the Nrf2/TR1 signaling pathway. Cancer Letters 2020;470:29-42. [DOI: 10.1016/j.canlet.2019.11.042] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 9.5] [Reference Citation Analysis]
462 Traka MH, Melchini A, Coode-Bate J, Al Kadhi O, Saha S, Defernez M, Troncoso-Rey P, Kibblewhite H, O'Neill CM, Bernuzzi F, Mythen L, Hughes J, Needs PW, Dainty JR, Savva GM, Mills RD, Ball RY, Cooper CS, Mithen RF. Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention-results from the Effect of Sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial. Am J Clin Nutr 2019;109:1133-44. [PMID: 30982861 DOI: 10.1093/ajcn/nqz012] [Cited by in Crossref: 21] [Cited by in F6Publishing: 36] [Article Influence: 10.5] [Reference Citation Analysis]
463 Yang H, Xiang S, Kazi A, Sebti SM. The GTPase KRAS suppresses the p53 tumor suppressor by activating the NRF2-regulated antioxidant defense system in cancer cells. J Biol Chem 2020;295:3055-63. [PMID: 32001619 DOI: 10.1074/jbc.RA119.011930] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
464 Vizioli MG, Liu T, Miller KN, Robertson NA, Gilroy K, Lagnado AB, Perez-Garcia A, Kiourtis C, Dasgupta N, Lei X, Kruger PJ, Nixon C, Clark W, Jurk D, Bird TG, Passos JF, Berger SL, Dou Z, Adams PD. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev 2020;34:428-45. [PMID: 32001510 DOI: 10.1101/gad.331272.119] [Cited by in Crossref: 53] [Cited by in F6Publishing: 91] [Article Influence: 26.5] [Reference Citation Analysis]
465 Liu M, Deng M, Luo Q, Dou X, Jia Z. High-Salt Loading Downregulates Nrf2 Expression in a Sodium-Dependent Manner in Renal Collecting Duct Cells. Front Physiol 2019;10:1565. [PMID: 32038274 DOI: 10.3389/fphys.2019.01565] [Cited by in Crossref: 2] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
466 Lin H, Qiao Y, Yang H, Nan Q, Qu W, Feng F, Liu W, Chen Y, Sun H. Small molecular Nrf2 inhibitors as chemosensitizers for cancer therapy. Future Med Chem 2020;12:243-67. [PMID: 31950858 DOI: 10.4155/fmc-2019-0285] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
467 Chaves Filho AJM, Cunha NL, de Souza AG, Soares MV, Jucá PM, de Queiroz T, Oliveira JVS, Valvassori SS, Barichello T, Quevedo J, de Lucena D, Macedo DS. The GLP-1 receptor agonist liraglutide reverses mania-like alterations and memory deficits induced by D-amphetamine and augments lithium effects in mice: Relevance for bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2020;99:109872. [PMID: 31954756 DOI: 10.1016/j.pnpbp.2020.109872] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
468 Singh D, Arora R, Bhatia A, Singh H, Singh B, Arora S. Molecular targets in cancer prevention by 4-(methylthio)butyl isothiocyanate - A comprehensive review. Life Sci 2020;241:117061. [PMID: 31794774 DOI: 10.1016/j.lfs.2019.117061] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
469 Sotolongo K, Ghiso J, Rostagno A. Nrf2 activation through the PI3K/GSK-3 axis protects neuronal cells from Aβ-mediated oxidative and metabolic damage. Alzheimers Res Ther 2020;12:13. [PMID: 31931869 DOI: 10.1186/s13195-019-0578-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
470 Vivarini AC, Lopes UG. The Potential Role of Nrf2 Signaling in Leishmania Infection Outcomes. Front Cell Infect Microbiol 2019;9:453. [PMID: 31998662 DOI: 10.3389/fcimb.2019.00453] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
471 Zhou Y, Xu X, Wu J, Xu L, Zhang M, Li Z, Wang D. Allyl isothiocyanate treatment alleviates chronic obstructive pulmonary disease through the Nrf2-Notch1 signaling and upregulation of MRP1. Life Sci 2020;243:117291. [PMID: 31927049 DOI: 10.1016/j.lfs.2020.117291] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
472 Mukhopadhyay S, Goswami D, Adiseshaiah PP, Burgan W, Yi M, Guerin TM, Kozlov SV, Nissley DV, McCormick F. Undermining Glutaminolysis Bolsters Chemotherapy While NRF2 Promotes Chemoresistance in KRAS-Driven Pancreatic Cancers.Cancer Res. 2020;80:1630-1643. [PMID: 31911550 DOI: 10.1158/0008-5472.CAN-19-1363] [Cited by in Crossref: 52] [Cited by in F6Publishing: 84] [Article Influence: 26.0] [Reference Citation Analysis]
473 Escoll M, Lastra D, Pajares M, Robledinos-Antón N, Rojo AI, Fernández-Ginés R, Mendiola M, Martínez-Marín V, Esteban I, López-Larrubia P, Gargini R, Cuadrado A. Transcription factor NRF2 uses the Hippo pathway effector TAZ to induce tumorigenesis in glioblastomas. Redox Biol 2020;30:101425. [PMID: 31918259 DOI: 10.1016/j.redox.2019.101425] [Cited by in Crossref: 10] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
474 Dang X, Zhang R, Peng Z, Qin Y, Sun J, Niu Z, Pei H. HIPK2 overexpression relieves hypoxia/reoxygenation-induced apoptosis and oxidative damage of cardiomyocytes through enhancement of the Nrf2/ARE signaling pathway. Chemico-Biological Interactions 2020;316:108922. [DOI: 10.1016/j.cbi.2019.108922] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
475 Peng C, Zhou ZM, Li J, Luo Y, Zhou YS, Ke XH, Huang KE. CCl4-Induced Liver Injury Was Ameliorated by Qi-Ge Decoction through the Antioxidant Pathway. Evid Based Complement Alternat Med 2019;2019:5941263. [PMID: 31976000 DOI: 10.1155/2019/5941263] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
476 Banella C, Catalano G, Travaglini S, Divona M, Masciarelli S, Guerrera G, Fazi F, Lo Coco F, Voso MT, Noguera N. PML/RARa Interferes with NRF2 Transcriptional Activity Increasing the Sensitivity to Ascorbate of Acute Promyelocytic Leukemia Cells. Cancers (Basel) 2019;12:E95. [PMID: 31905996 DOI: 10.3390/cancers12010095] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
477 Teimouri M, Hosseini H, Shabani M, Koushki M, Noorbakhsh F, Meshkani R. Inhibiting miR-27a and miR-142-5p attenuate nonalcoholic fatty liver disease by regulating Nrf2 signaling pathway. IUBMB Life 2020;72:361-72. [PMID: 31889412 DOI: 10.1002/iub.2221] [Cited by in Crossref: 8] [Cited by in F6Publishing: 15] [Article Influence: 2.7] [Reference Citation Analysis]
478 Lovatt M, Adnan K, Kocaba V, Dirisamer M, Peh GSL, Mehta JS. Peroxiredoxin-1 regulates lipid peroxidation in corneal endothelial cells. Redox Biol 2020;30:101417. [PMID: 31901729 DOI: 10.1016/j.redox.2019.101417] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
479 Namani A, Liu K, Wang S, Zhou X, Liao Y, Wang H, Wang XJ, Tang X. Genome-wide global identification of NRF2 binding sites in A549 non-small cell lung cancer cells by ChIP-Seq reveals NRF2 regulation of genes involved in focal adhesion pathways. Aging (Albany NY). 2019;11:12600-12623. [PMID: 31884422 DOI: 10.18632/aging.102590] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 2.7] [Reference Citation Analysis]
480 Li L, Fu J, Liu D, Sun J, Hou Y, Chen C, Shao J, Wang L, Wang X, Zhao R, Wang H, Andersen ME, Zhang Q, Xu Y, Pi J. Hepatocyte-specific Nrf2 deficiency mitigates high-fat diet-induced hepatic steatosis: Involvement of reduced PPARγ expression. Redox Biol 2020;30:101412. [PMID: 31901728 DOI: 10.1016/j.redox.2019.101412] [Cited by in Crossref: 11] [Cited by in F6Publishing: 21] [Article Influence: 3.7] [Reference Citation Analysis]
481 Zhang Y, Yan T, Sun D, Xie C, Wang T, Liu X, Wang J, Wang Q, Luo Y, Wang P, Yagai T, Krausz KW, Yang X, Gonzalez FJ. Rutaecarpine inhibits KEAP1-NRF2 interaction to activate NRF2 and ameliorate dextran sulfate sodium-induced colitis. Free Radic Biol Med 2020;148:33-41. [PMID: 31874248 DOI: 10.1016/j.freeradbiomed.2019.12.012] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
482 Balfourier A, Luciani N, Wang G, Lelong G, Ersen O, Khelfa A, Alloyeau D, Gazeau F, Carn F. Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proc Natl Acad Sci U S A 2020;117:103-13. [PMID: 31852822 DOI: 10.1073/pnas.1911734116] [Cited by in Crossref: 52] [Cited by in F6Publishing: 82] [Article Influence: 17.3] [Reference Citation Analysis]
483 Agarkov AA, Popova TN, Boltysheva YG. Influence of 10-(6-plastoquinonyl) decyltriphenylphosphonium on free-radical homeostasis in the heart and blood serum of rats with streptozotocin-induced hyperglycemia. World J Diabetes 2019; 10(12): 546-559 [PMID: 31915517 DOI: 10.4239/wjd.v10.i12.546] [Cited by in CrossRef: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
484 Wang J, Zhang J, Chen L, Cai J, Li Z, Zhang Z, Zheng Q, Wang Y, Zhou S, Liu Q, Cai L. Combination of Broccoli Sprout Extract and Zinc Provides Better Protection against Intermittent Hypoxia-Induced Cardiomyopathy Than Monotherapy in Mice. Oxid Med Cell Longev 2019;2019:2985901. [PMID: 31934264 DOI: 10.1155/2019/2985901] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
485 Matzinger M, Fischhuber K, Pölöske D, Mechtler K, Heiss EH. AMPK leads to phosphorylation of the transcription factor Nrf2, tuning transactivation of selected target genes. Redox Biol 2020;29:101393. [PMID: 31805502 DOI: 10.1016/j.redox.2019.101393] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
486 Wang H, Liu K, Chi Z, Zhou X, Ren G, Zhou R, Li Y, Tang X, Wang XJ. Interplay of MKP-1 and Nrf2 drives tumor growth and drug resistance in non-small cell lung cancer. Aging (Albany NY) 2019;11:11329-46. [PMID: 31811110 DOI: 10.18632/aging.102531] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
487 Chen X, Gumina G, Virga KG. Recent Advances in Drug Repurposing for Parkinson's Disease. Curr Med Chem 2019;26:5340-62. [PMID: 30027839 DOI: 10.2174/0929867325666180719144850] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
488 Wan T, Wang Z, Luo Y, Zhang Y, He W, Mei Y, Xue J, Li M, Pan H, Li W, Wang Q, Huang Y. FA-97, a New Synthetic Caffeic Acid Phenethyl Ester Derivative, Protects against Oxidative Stress-Mediated Neuronal Cell Apoptosis and Scopolamine-Induced Cognitive Impairment by Activating Nrf2/HO-1 Signaling. Oxid Med Cell Longev 2019;2019:8239642. [PMID: 31885818 DOI: 10.1155/2019/8239642] [Cited by in Crossref: 17] [Cited by in F6Publishing: 27] [Article Influence: 5.7] [Reference Citation Analysis]
489 Fürstenau CR, de Souza ICC, de Oliveira MR. The effects of kahweol, a diterpene present in coffee, on the mitochondria of the human neuroblastoma SH-SY5Y cells exposed to hydrogen peroxide. Toxicology in Vitro 2019;61:104601. [DOI: 10.1016/j.tiv.2019.104601] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
490 Matzinger M, Fischhuber K, Pölöske D, Mechtler K, Heiss EH. AMPK leads to phosphorylation of the transcription factor Nrf2, tuning transactivation of selected target genes. Redox Biol 2020;29:101393. [PMID: 31805502 DOI: 10.1016/j.redox.2019.101393] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
491 Otsuki Y, Yamasaki J, Suina K, Okazaki S, Koike N, Saya H, Nagano O. Vasodilator oxyfedrine inhibits aldehyde metabolism and thereby sensitizes cancer cells to xCT-targeted therapy. Cancer Sci 2020;111:127-36. [PMID: 31692172 DOI: 10.1111/cas.14224] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
492 Chen Y, Zheng Z, Li C, Pan Y, Tang X, Wang XJ. Synthetic Imine Resveratrol Analog 2-Methoxyl-3,6-Dihydroxyl-IRA Ameliorates Colitis by Activating Protective Nrf2 Pathway and Inhibiting NLRP3 Expression. Oxid Med Cell Longev 2019;2019:7180284. [PMID: 31885813 DOI: 10.1155/2019/7180284] [Cited by in Crossref: 5] [Cited by in F6Publishing: 10] [Article Influence: 1.7] [Reference Citation Analysis]
493 Chen W, Gao XX, Ma L, Liu ZB, Li L, Wang H, Gao L, Xu DX, Chen YH. Obeticholic Acid Protects against Gestational Cholestasis-Induced Fetal Intrauterine Growth Restriction in Mice. Oxid Med Cell Longev 2019;2019:7419249. [PMID: 31827696 DOI: 10.1155/2019/7419249] [Cited by in Crossref: 4] [Cited by in F6Publishing: 10] [Article Influence: 1.3] [Reference Citation Analysis]
494 Chan K, Robert F, Oertlin C, Kapeller-Libermann D, Avizonis D, Gutierrez J, Handly-Santana A, Doubrovin M, Park J, Schoepfer C, Da Silva B, Yao M, Gorton F, Shi J, Thomas CJ, Brown LE, Porco JA Jr, Pollak M, Larsson O, Pelletier J, Chio IIC. eIF4A supports an oncogenic translation program in pancreatic ductal adenocarcinoma. Nat Commun 2019;10:5151. [PMID: 31723131 DOI: 10.1038/s41467-019-13086-5] [Cited by in Crossref: 20] [Cited by in F6Publishing: 33] [Article Influence: 6.7] [Reference Citation Analysis]
495 Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen AL, Kensler TW, Dinkova-Kostova AT. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov. 2019;18:295-317. [PMID: 30610225 DOI: 10.1038/s41573-018-0008-x] [Cited by in Crossref: 346] [Cited by in F6Publishing: 464] [Article Influence: 115.3] [Reference Citation Analysis]
496 Zimta AA, Cenariu D, Irimie A, Magdo L, Nabavi SM, Atanasov AG, Berindan-Neagoe I. The Role of Nrf2 Activity in Cancer Development and Progression. Cancers (Basel). 2019;11. [PMID: 31717324 DOI: 10.3390/cancers11111755] [Cited by in Crossref: 51] [Cited by in F6Publishing: 82] [Article Influence: 17.0] [Reference Citation Analysis]
497 Pinho RA, Aguiar AS Jr, Radák Z. Effects of Resistance Exercise on Cerebral Redox Regulation and Cognition: An Interplay Between Muscle and Brain. Antioxidants (Basel) 2019;8:E529. [PMID: 31698763 DOI: 10.3390/antiox8110529] [Cited by in Crossref: 7] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
498 Mizumura K, Maruoka S, Shimizu T, Gon Y. Role of Nrf2 in the pathogenesis of respiratory diseases. Respir Investig 2020;58:28-35. [PMID: 31704266 DOI: 10.1016/j.resinv.2019.10.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
499 Long MJC, Wang L, Aye Y. Getting the Right Grip? How Understanding Electrophile Selectivity Profiles Could Illuminate Our Understanding of Redox Signaling. Antioxid Redox Signal 2020;33:1077-91. [PMID: 31578876 DOI: 10.1089/ars.2019.7894] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
500 Song C, Liu B, Xu P, Ge X, Zhang H. Emodin ameliorates metabolic and antioxidant capacity inhibited by dietary oxidized fish oil through PPARs and Nrf2-Keap1 signaling in Wuchang bream (Megalobrama amblycephala). Fish & Shellfish Immunology 2019;94:842-51. [DOI: 10.1016/j.fsi.2019.10.001] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 5.3] [Reference Citation Analysis]
501 Wang L, Yang S, Yan L, Wei H, Wang J, Yu S, Kong AT, Zhang Y. Hypoxia preconditioning promotes endurance exercise capacity of mice by activating skeletal muscle Nrf2. Journal of Applied Physiology 2019;127:1267-77. [DOI: 10.1152/japplphysiol.00347.2019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
502 Poganik JR, Long MJC, Disare MT, Liu X, Chang SH, Hla T, Aye Y. Post-transcriptional regulation of Nrf2-mRNA by the mRNA-binding proteins HuR and AUF1. FASEB J 2019;33:14636-52. [PMID: 31665914 DOI: 10.1096/fj.201901930R] [Cited by in Crossref: 13] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
503 Datta S, Sinha D. EGCG maintained Nrf2-mediated redox homeostasis and minimized etoposide resistance in lung cancer cells. Journal of Functional Foods 2019;62:103553. [DOI: 10.1016/j.jff.2019.103553] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
504 Dai X, Yan X, Wintergerst KA, Cai L, Keller BB, Tan Y. Nrf2: Redox and Metabolic Regulator of Stem Cell State and Function. Trends Mol Med. 2020;26:185-200. [PMID: 31679988 DOI: 10.1016/j.molmed.2019.09.007] [Cited by in Crossref: 34] [Cited by in F6Publishing: 32] [Article Influence: 11.3] [Reference Citation Analysis]
505 Oksanen M, Hyötyläinen I, Trontti K, Rolova T, Wojciechowski S, Koskuvi M, Viitanen M, Levonen AL, Hovatta I, Roybon L, Lehtonen Š, Kanninen KM, Hämäläinen RH, Koistinaho J. NF-E2-related factor 2 activation boosts antioxidant defenses and ameliorates inflammatory and amyloid properties in human Presenilin-1 mutated Alzheimer's disease astrocytes. Glia 2020;68:589-99. [PMID: 31670864 DOI: 10.1002/glia.23741] [Cited by in Crossref: 8] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
506 Zhang D, Lu Z, Zhang Z, Man J, Guo R, Liu C, Wang J. A likely protective effect of dimethyl itaconate on cerebral ischemia/reperfusion injury. Int Immunopharmacol 2019;77:105924. [PMID: 31678864 DOI: 10.1016/j.intimp.2019.105924] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
507 Klieser E, Mayr C, Kiesslich T, Wissniowski T, Fazio PD, Neureiter D, Ocker M. The Crosstalk of miRNA and Oxidative Stress in the Liver: From Physiology to Pathology and Clinical Implications. Int J Mol Sci 2019;20:E5266. [PMID: 31652839 DOI: 10.3390/ijms20215266] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 9.3] [Reference Citation Analysis]
508 Petrillo S, D'Amico J, La Rosa P, Bertini ES, Piemonte F. Targeting NRF2 for the Treatment of Friedreich's Ataxia: A Comparison among Drugs. Int J Mol Sci 2019;20:E5211. [PMID: 31640150 DOI: 10.3390/ijms20205211] [Cited by in Crossref: 23] [Cited by in F6Publishing: 30] [Article Influence: 7.7] [Reference Citation Analysis]
509 Lu Y, Cederbaum AI. Cytochrome P450s and Alcoholic Liver Disease. Curr Pharm Des 2018;24:1502-17. [PMID: 29637855 DOI: 10.2174/1381612824666180410091511] [Cited by in Crossref: 21] [Cited by in F6Publishing: 36] [Article Influence: 7.0] [Reference Citation Analysis]
510 Ashrafizadeh M, Fekri HS, Ahmadi Z, Farkhondeh T, Samarghandian S. Therapeutic and biological activities of berberine: The involvement of Nrf2 signaling pathway. J Cell Biochem 2020;121:1575-85. [PMID: 31609017 DOI: 10.1002/jcb.29392] [Cited by in Crossref: 22] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
511 Pittman GS, Wang X, Campbell MR, Coulter SJ, Olson JR, Pavuk M, Birnbaum LS, Bell DA. Polychlorinated biphenyl exposure and DNA methylation in the Anniston Community Health Survey. Epigenetics 2020;15:337-57. [PMID: 31607210 DOI: 10.1080/15592294.2019.1666654] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
512 Houghton CA. Sulforaphane: Its "Coming of Age" as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease. Oxid Med Cell Longev 2019;2019:2716870. [PMID: 31737167 DOI: 10.1155/2019/2716870] [Cited by in Crossref: 48] [Cited by in F6Publishing: 64] [Article Influence: 16.0] [Reference Citation Analysis]
513 Bagheri H, Ghasemi F, Barreto GE, Rafiee R, Sathyapalan T, Sahebkar A. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors 2020;46:5-20. [PMID: 31580521 DOI: 10.1002/biof.1566] [Cited by in Crossref: 57] [Cited by in F6Publishing: 37] [Article Influence: 19.0] [Reference Citation Analysis]
514 Bao L, Festa F, Freet CS, Lee JP, Hirschler-Laszkiewicz IM, Chen SJ, Keefer KA, Wang HG, Patterson AD, Cheung JY, Miller BA. The Human Transient Receptor Potential Melastatin 2 Ion Channel Modulates ROS Through Nrf2. Sci Rep 2019;9:14132. [PMID: 31575956 DOI: 10.1038/s41598-019-50661-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
515 Hammad A, Namani A, Elshaer M, Wang XJ, Tang X. "NRF2 addiction" in lung cancer cells and its impact on cancer therapy. Cancer Lett 2019;467:40-9. [PMID: 31574294 DOI: 10.1016/j.canlet.2019.09.016] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 7.7] [Reference Citation Analysis]
516 Wang Y, Zuo R, Wang Z, Luo L, Wu J, Zhang C, Liu M, Shi C, Zhou Y. Kinsenoside ameliorates intervertebral disc degeneration through the activation of AKT-ERK1/2-Nrf2 signaling pathway. Aging (Albany NY) 2019;11:7961-77. [PMID: 31546235 DOI: 10.18632/aging.102302] [Cited by in Crossref: 9] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
517 Shaw P, Chattopadhyay A. Nrf2–ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms. J Cell Physiol 2020;235:3119-30. [DOI: 10.1002/jcp.29219] [Cited by in Crossref: 57] [Cited by in F6Publishing: 99] [Article Influence: 19.0] [Reference Citation Analysis]
518 Luo M, Shang L, Brooks MD, Jiagge E, Zhu Y, Buschhaus JM, Conley S, Fath MA, Davis A, Gheordunescu E, Wang Y, Harouaka R, Lozier A, Triner D, McDermott S, Merajver SD, Luker GD, Spitz DR, Wicha MS. Targeting Breast Cancer Stem Cell State Equilibrium through Modulation of Redox Signaling. Cell Metab. 2018;28:69-86.e6. [PMID: 29972798 DOI: 10.1016/j.cmet.2018.06.006] [Cited by in Crossref: 117] [Cited by in F6Publishing: 151] [Article Influence: 39.0] [Reference Citation Analysis]
519 Guo H, Xu J, Zheng Q, He J, Zhou W, Wang K, Huang X, Fan Q, Ma J, Cheng J, Mei W, Xing R, Cai R. NRF2 SUMOylation promotes de novo serine synthesis and maintains HCC tumorigenesis. Cancer Lett 2019;466:39-48. [PMID: 31546024 DOI: 10.1016/j.canlet.2019.09.010] [Cited by in Crossref: 15] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
520 Paramasivan P, Kankia IH, Langdon SP, Deeni YY. Emerging role of nuclear factor erythroid 2-related factor 2 in the mechanism of action and resistance to anticancer therapies. Cancer Drug Resist 2019;2:490-515. [PMID: 35582567 DOI: 10.20517/cdr.2019.57] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
521 Bender D, Hildt E. Effect of Hepatitis Viruses on the Nrf2/Keap1-Signaling Pathway and Its Impact on Viral Replication and Pathogenesis. Int J Mol Sci 2019;20:E4659. [PMID: 31546975 DOI: 10.3390/ijms20184659] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
522 Silva-Islas CA, Chánez-Cárdenas ME, Barrera-Oviedo D, Ortiz-Plata A, Pedraza-Chaverri J, Maldonado PD. Diallyl Trisulfide Protects Rat Brain Tissue against the Damage Induced by Ischemia-Reperfusion through the Nrf2 Pathway. Antioxidants (Basel) 2019;8:E410. [PMID: 31540440 DOI: 10.3390/antiox8090410] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
523 Chen LH, Liao CY, Lai LC, Tsai MH, Chuang EY. Semaphorin 6A Attenuates the Migration Capability of Lung Cancer Cells via the NRF2/HMOX1 Axis. Sci Rep 2019;9:13302. [PMID: 31527696 DOI: 10.1038/s41598-019-49874-8] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
524 Best SA, Ding S, Kersbergen A, Dong X, Song JY, Xie Y, Reljic B, Li K, Vince JE, Rathi V, Wright GM, Ritchie ME, Sutherland KD. Distinct initiating events underpin the immune and metabolic heterogeneity of KRAS-mutant lung adenocarcinoma. Nat Commun 2019;10:4190. [PMID: 31519898 DOI: 10.1038/s41467-019-12164-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 32] [Article Influence: 7.7] [Reference Citation Analysis]
525 Zarei M, Du H, Nassar AH, Yan RE, Giannikou K, Johnson SH, Lam HC, Henske EP, Wang Y, Zhang T, Asara J, Kwiatkowski DJ. Tumors with TSC mutations are sensitive to CDK7 inhibition through NRF2 and glutathione depletion. J Exp Med 2019;216:2635-52. [PMID: 31506280 DOI: 10.1084/jem.20190251] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
526 Gunderstofte C, Iversen MB, Peri S, Thielke A, Balachandran S, Holm CK, Olagnier D. Nrf2 Negatively Regulates Type I Interferon Responses and Increases Susceptibility to Herpes Genital Infection in Mice. Front Immunol 2019;10:2101. [PMID: 31555293 DOI: 10.3389/fimmu.2019.02101] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
527 Schwarz M, Lossow K, Kopp JF, Schwerdtle T, Kipp AP. Crosstalk of Nrf2 with the Trace Elements Selenium, Iron, Zinc, and Copper. Nutrients 2019;11:E2112. [PMID: 31491970 DOI: 10.3390/nu11092112] [Cited by in Crossref: 12] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
528 Cho HY, Kleeberger SR. Mitochondrial biology in airway pathogenesis and the role of NRF2. Arch Pharm Res 2020;43:297-320. [PMID: 31486024 DOI: 10.1007/s12272-019-01182-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
529 Paunkov A, Chartoumpekis DV, Ziros PG, Sykiotis GP. A Bibliometric Review of the Keap1/Nrf2 Pathway and its Related Antioxidant Compounds. Antioxidants (Basel) 2019;8:E353. [PMID: 31480567 DOI: 10.3390/antiox8090353] [Cited by in Crossref: 38] [Cited by in F6Publishing: 46] [Article Influence: 12.7] [Reference Citation Analysis]
530 Fuentes-hernández S, Alarcón-sánchez BR, Guerrero-escalera D, Montes-aparicio AV, Castro-gil MP, Idelfonso-garcía OG, Rosas-madrigal S, Aparicio-bautista DI, Pérez-hernández JL, Reyes-gordillo K, Lakshman MR, Vásquez-garzón VR, Baltiérrez-hoyos R, López-gonzález MDL, Sierra-santoyo A, Villa-treviño S, Pérez-carreón JI, Arellanes-robledo J. Chronic administration of diethylnitrosamine to induce hepatocarcinogenesis and to evaluate its synergistic effect with other hepatotoxins in mice. Toxicology and Applied Pharmacology 2019;378:114611. [DOI: 10.1016/j.taap.2019.114611] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
531 Kindleysides S, Kruger R, Douwes J, Tannock GW, Renall N, Slater J, Lawley B, McGill AT, Brennan N, Manukia M, Richter M, Tupai-Firestone R, Signal TL, Gander P, Stannard SR, Breier BH. Predictors Linking Obesity and the Gut Microbiome (the PROMISE Study): Protocol and Recruitment Strategy for a Cross-Sectional Study on Pathways That Affect the Gut Microbiome and Its Impact on Obesity. JMIR Res Protoc 2019;8:e14529. [PMID: 31452525 DOI: 10.2196/14529] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
532 Pölönen P, Jawahar Deen A, Leinonen HM, Jyrkkänen HK, Kuosmanen S, Mononen M, Jain A, Tuomainen T, Pasonen-Seppänen S, Hartikainen JM, Mannermaa A, Nykter M, Tavi P, Johansen T, Heinäniemi M, Levonen AL. Nrf2 and SQSTM1/p62 jointly contribute to mesenchymal transition and invasion in glioblastoma. Oncogene 2019;38:7473-90. [PMID: 31444413 DOI: 10.1038/s41388-019-0956-6] [Cited by in Crossref: 18] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
533 Zhang J, Shi Z, Xu X, Yu Z, Mi J. The influence of microenvironment on tumor immunotherapy.FEBS J. 2019;286:4160-4175. [PMID: 31365790 DOI: 10.1111/febs.15028] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
534 Pompili S, Sferra R, Gaudio E, Viscido A, Frieri G, Vetuschi A, Latella G. Can Nrf2 Modulate the Development of Intestinal Fibrosis and Cancer in Inflammatory Bowel Disease? Int J Mol Sci 2019;20:E4061. [PMID: 31434263 DOI: 10.3390/ijms20164061] [Cited by in Crossref: 9] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
535 Galiè M, Covi V, Tabaracci G, Malatesta M. The Role of Nrf2 in the Antioxidant Cellular Response to Medical Ozone Exposure. Int J Mol Sci 2019;20:E4009. [PMID: 31426459 DOI: 10.3390/ijms20164009] [Cited by in Crossref: 19] [Cited by in F6Publishing: 32] [Article Influence: 6.3] [Reference Citation Analysis]
536 Tounsi N, Djerdjouri B, Yahia OA, Belkebir A. Pro-oxidant versus anti-oxidant effects of seeds aglycone extracts of Lepidium sativum and Eruca vesicaria Linn., in vitro, and on neutrophil nitro-oxidative functions. J Food Sci Technol 2019;56:5492-9. [PMID: 31749497 DOI: 10.1007/s13197-019-04021-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
537 Zhang RJ, Li Y, Liu Q, Gao YJ, Du J, Ma J, Sun SG, Wang L. Differential Expression Profiles and Functional Prediction of Circular RNAs and Long Non-coding RNAs in the Hippocampus of Nrf2-Knockout Mice. Front Mol Neurosci 2019;12:196. [PMID: 31447646 DOI: 10.3389/fnmol.2019.00196] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
538 Liu P, Tian W, Tao S, Tillotson J, Wijeratne EMK, Gunatilaka AAL, Zhang DD, Chapman E. Non-covalent NRF2 Activation Confers Greater Cellular Protection than Covalent Activation. Cell Chem Biol 2019;26:1427-1435.e5. [PMID: 31402317 DOI: 10.1016/j.chembiol.2019.07.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
539 Tan J, Li J, Ma J, Qiao F. Hepatoprotective effect of essential oils of Nepeta cataria L. on acetaminophen-induced liver dysfunction. Biosci Rep 2019;39:BSR20190697. [PMID: 31337687 DOI: 10.1042/BSR20190697] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
540 Galán-Ganga M, Del Río R, Jiménez-Moreno N, Díaz-Guerra M, Lastres-Becker I. Cannabinoid CB2 Receptor Modulation by the Transcription Factor NRF2 is Specific in Microglial Cells. Cell Mol Neurobiol 2020;40:167-77. [PMID: 31385133 DOI: 10.1007/s10571-019-00719-y] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
541 Liu L, Kelly MG, Wierzbicki EL, Escober-Nario IC, Vollmer MK, Doré S. Nrf2 Plays an Essential Role in Long-Term Brain Damage and Neuroprotection of Korean Red Ginseng in a Permanent Cerebral Ischemia Model. Antioxidants (Basel) 2019;8:E273. [PMID: 31382635 DOI: 10.3390/antiox8080273] [Cited by in Crossref: 7] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
542 Zhang J, Shi Z, Xu X, Yu Z, Mi J. The influence of microenvironment on tumor immunotherapy. FEBS J 2019;286:4160-75. [PMID: 31365790 DOI: 10.1111/febs.15028] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
543 Gao Q, Zhang G, Zheng Y, Yang Y, Chen C, Xia J, Liang L, Lei C, Hu Y, Cai X, Zhang W, Tang H, Chen Y, Huang A, Wang K, Tang N. SLC27A5 deficiency activates NRF2/TXNRD1 pathway by increased lipid peroxidation in HCC. Cell Death Differ 2020;27:1086-104. [PMID: 31367013 DOI: 10.1038/s41418-019-0399-1] [Cited by in Crossref: 9] [Cited by in F6Publishing: 27] [Article Influence: 3.0] [Reference Citation Analysis]
544 Jiang Z, Guo X, Zhang K, Sekaran G, Cao B, Zhao Q, Zhang S, Kirby GM, Zhang X. The Essential Oils and Eucalyptol From Artemisia vulgaris L. Prevent Acetaminophen-Induced Liver Injury by Activating Nrf2-Keap1 and Enhancing APAP Clearance Through Non-Toxic Metabolic Pathway. Front Pharmacol 2019;10:782. [PMID: 31404264 DOI: 10.3389/fphar.2019.00782] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
545 Fan TWM, Bruntz RC, Yang Y, Song H, Chernyavskaya Y, Deng P, Zhang Y, Shah PP, Beverly LJ, Qi Z, Mahan AL, Higashi RM, Dang CV, Lane AN. De novo synthesis of serine and glycine fuels purine nucleotide biosynthesis in human lung cancer tissues. J Biol Chem 2019;294:13464-77. [PMID: 31337706 DOI: 10.1074/jbc.RA119.008743] [Cited by in Crossref: 21] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
546 Surai PF, Kochish II, Fisinin VI, Kidd MT. Antioxidant Defence Systems and Oxidative Stress in Poultry Biology: An Update. Antioxidants (Basel) 2019;8:E235. [PMID: 31336672 DOI: 10.3390/antiox8070235] [Cited by in Crossref: 130] [Cited by in F6Publishing: 110] [Article Influence: 43.3] [Reference Citation Analysis]
547 Surai PF, Kochish II, Fisinin VI, Juniper DT. Revisiting Oxidative Stress and the Use of Organic Selenium in Dairy Cow Nutrition. Animals (Basel) 2019;9:E462. [PMID: 31331084 DOI: 10.3390/ani9070462] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 5.7] [Reference Citation Analysis]
548 Robledinos-Antón N, Fernández-Ginés R, Manda G, Cuadrado A. Activators and Inhibitors of NRF2: A Review of Their Potential for Clinical Development. Oxid Med Cell Longev 2019;2019:9372182. [PMID: 31396308 DOI: 10.1155/2019/9372182] [Cited by in Crossref: 136] [Cited by in F6Publishing: 211] [Article Influence: 45.3] [Reference Citation Analysis]
549 Sivandzade F, Bhalerao A, Cucullo L. Cerebrovascular and Neurological Disorders: Protective Role of NRF2. Int J Mol Sci 2019;20:E3433. [PMID: 31336872 DOI: 10.3390/ijms20143433] [Cited by in Crossref: 36] [Cited by in F6Publishing: 40] [Article Influence: 12.0] [Reference Citation Analysis]
550 Malacrida S, Giannella A, Ceolotto G, Reggiani C, Vezzoli A, Mrakic-Sposta S, Moretti S, Turner R, Falla M, Brugger H, Strapazzon G. Transcription Factors Regulation in Human Peripheral White Blood Cells during Hypobaric Hypoxia Exposure: an in-vivo experimental study. Sci Rep 2019;9:9901. [PMID: 31289332 DOI: 10.1038/s41598-019-46391-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
551 Filev AD, Shmarina GV, Ershova ES, Veiko NN, Martynov AV, Borzikova MA, Poletkina AA, Dolgikh OA, Veiko VP, Bekker AA, Chirkov AV, Volynshchikov ZN, Deviataikina AS, Shashin DM, Puretskiy VK, Tabakov VJ, Izhevskaya VL, Kutsev SI, Kostyuk SV, Umriukhin PE. Oxidized Cell-Free DNA Role in the Antioxidant Defense Mechanisms under Stress. Oxid Med Cell Longev 2019;2019:1245749. [PMID: 31360293 DOI: 10.1155/2019/1245749] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 2.7] [Reference Citation Analysis]
552 de Miranda Ramos V, Gasparotto J, Figueiró F, de Fraga Dias A, Rostirolla DC, Somensi N, da Rosa HT, Grun LK, Barbé-Tuana FM, Gelain DP, Moreira JCF. Retinoic acid downregulates thiol antioxidant defences and homologous recombination while promotes A549 cells sensitization to cisplatin. Cell Signal 2019;62:109356. [PMID: 31288066 DOI: 10.1016/j.cellsig.2019.109356] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
553 Somparn N, Prawan A, Senggunprai L, Kukongviriyapan U, Jetsrisuparb A, Lee M, Kim D, Kukongviriyapan V, Surh Y. Cellular adaptation mediated through Nrf2-induced glutamate cysteine ligase up-regulation against oxidative stress caused by iron overload in β-thalassemia/HbE patients. Free Radical Research 2019;53:791-9. [DOI: 10.1080/10715762.2019.1632444] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
554 Kuosmanen SM, Kansanen E, Kaikkonen MU, Sihvola V, Pulkkinen K, Jyrkkänen HK, Tuoresmäki P, Hartikainen J, Hippeläinen M, Kokki H, Tavi P, Heikkinen S, Levonen AL. NRF2 regulates endothelial glycolysis and proliferation with miR-93 and mediates the effects of oxidized phospholipids on endothelial activation. Nucleic Acids Res 2018;46:1124-38. [PMID: 29161413 DOI: 10.1093/nar/gkx1155] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 9.7] [Reference Citation Analysis]
555 Fiocchetti M, Fernandez VS, Montalesi E, Marino M. Neuroglobin: A Novel Player in the Oxidative Stress Response of Cancer Cells. Oxid Med Cell Longev 2019;2019:6315034. [PMID: 31354909 DOI: 10.1155/2019/6315034] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
556 Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. Oxid Med Cell Longev 2019;2019:8563845. [PMID: 31354915 DOI: 10.1155/2019/8563845] [Cited by in Crossref: 118] [Cited by in F6Publishing: 181] [Article Influence: 39.3] [Reference Citation Analysis]
557 Negrette-Guzmán M. Combinations of the antioxidants sulforaphane or curcumin and the conventional antineoplastics cisplatin or doxorubicin as prospects for anticancer chemotherapy. Eur J Pharmacol 2019;859:172513. [PMID: 31260654 DOI: 10.1016/j.ejphar.2019.172513] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
558 Yang F, Li J, Deng H, Wang Y, Lei C, Wang Q, Xiang J, Liang L, Xia J, Pan X, Li X, Long Q, Chang L, Xu P, Huang A, Wang K, Tang N. GSTZ1-1 Deficiency Activates NRF2/IGF1R Axis in HCC via Accumulation of Oncometabolite Succinylacetone. EMBO J 2019;38:e101964. [PMID: 31267557 DOI: 10.15252/embj.2019101964] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
559 Wahdan SA, Azab SS, Elsherbiny DA, El-demerdash E. Piceatannol protects against cisplatin nephrotoxicity via activation of Nrf2/HO-1 pathway and hindering NF-κB inflammatory cascade. Naunyn-Schmiedeberg's Arch Pharmacol 2019;392:1331-45. [DOI: 10.1007/s00210-019-01673-8] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
560 Flannery PJ, Trushina E. Mitochondrial Dysfunction in Alzheimer’s Disease and Progress in Mitochondria-Targeted Therapeutics. Curr Behav Neurosci Rep 2019;6:88-102. [DOI: 10.1007/s40473-019-00179-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 2.7] [Reference Citation Analysis]
561 Torrente L, DeNicola GM. Stressing Out PanIN: NRF2 Pushes over the Edge. Cancer Cell 2017;32:723-5. [PMID: 29232549 DOI: 10.1016/j.ccell.2017.11.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
562 Martin RM, Stallrich J, Bereman MS. Mixture designs to investigate adverse effects upon co-exposure to environmental cyanotoxins. Toxicology 2019;421:74-83. [DOI: 10.1016/j.tox.2019.04.013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 2.3] [Reference Citation Analysis]
563 Tu W, Wang H, Li S, Liu Q, Sha H. The Anti-Inflammatory and Anti-Oxidant Mechanisms of the Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases.Aging Dis. 2019;10:637-651. [PMID: 31165007 DOI: 10.14336/AD.2018.0513] [Cited by in Crossref: 123] [Cited by in F6Publishing: 209] [Article Influence: 41.0] [Reference Citation Analysis]
564 Chen L, Yang R, Qiao W, Zhang W, Chen J, Mao L, Goltzman D, Miao D. 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling. Aging Cell 2019;18:e12951. [PMID: 30907059 DOI: 10.1111/acel.12951] [Cited by in Crossref: 62] [Cited by in F6Publishing: 65] [Article Influence: 20.7] [Reference Citation Analysis]
565 Bai F, Hong D, Lu Y, Liu H, Xu C, Yao X. Prediction of the Antioxidant Response Elements' Response of Compound by Deep Learning. Front Chem 2019;7:385. [PMID: 31214568 DOI: 10.3389/fchem.2019.00385] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
566 Sparaneo A, Fabrizio FP, la Torre A, Graziano P, Di Maio M, Fontana A, Bisceglia M, Rossi A, Pizzolitto S, De Maglio G, Tancredi A, Grimaldi F, Balsamo T, Centra F, Manzorra MC, Trombetta D, Pantalone A, Bonfitto A, Maiello E, Fazio VM, Muscarella LA. Effects of KEAP1 Silencing on the Regulation of NRF2 Activity in Neuroendocrine Lung Tumors. Int J Mol Sci 2019;20:E2531. [PMID: 31126053 DOI: 10.3390/ijms20102531] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
567 Rapozzi V, D’este F, Xodo LE. Molecular pathways in cancer response to photodynamic therapy. J Porphyrins Phthalocyanines 2019;23:410-8. [DOI: 10.1142/s1088424619300064] [Cited by in Crossref: 7] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
568 Yang W, Liu H, Duan B, Xu X, Carmody D, Luo S, Walsh KM, Abbruzzese JL, Zhang X, Chen X, Wei Q. Three novel genetic variants in NRF2 signaling pathway genes are associated with pancreatic cancer risk. Cancer Sci 2019;110:2022-32. [PMID: 30972876 DOI: 10.1111/cas.14017] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
569 Mello T, Simeone I, Galli A. Mito-Nuclear Communication in Hepatocellular Carcinoma Metabolic Rewiring. Cells 2019;8:E417. [PMID: 31060333 DOI: 10.3390/cells8050417] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
570 Galan-Cobo A, Sitthideatphaiboon P, Qu X, Poteete A, Pisegna MA, Tong P, Chen PH, Boroughs LK, Rodriguez MLM, Zhang W, Parlati F, Wang J, Gandhi V, Skoulidis F, DeBerardinis RJ, Minna JD, Heymach JV. LKB1 and KEAP1/NRF2 Pathways Cooperatively Promote Metabolic Reprogramming with Enhanced Glutamine Dependence in KRAS-Mutant Lung Adenocarcinoma. Cancer Res 2019;79:3251-67. [PMID: 31040157 DOI: 10.1158/0008-5472.CAN-18-3527] [Cited by in Crossref: 65] [Cited by in F6Publishing: 93] [Article Influence: 21.7] [Reference Citation Analysis]
571 Telkoparan-Akillilar P, Suzen S, Saso L. Pharmacological Applications of Nrf2 Inhibitors as Potential Antineoplastic Drugs. Int J Mol Sci 2019;20:E2025. [PMID: 31022969 DOI: 10.3390/ijms20082025] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 10.3] [Reference Citation Analysis]
572 Liu L, Anderson GA, Fernandez TG, Doré S. Efficacy and Mechanism of Panax Ginseng in Experimental Stroke. Front Neurosci 2019;13:294. [PMID: 31068769 DOI: 10.3389/fnins.2019.00294] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
573 Xu D, Li X, Shao F, Lv G, Lv H, Lee JH, Qian X, Wang Z, Xia Y, Du L, Zheng Y, Wang H, Lyu J, Lu Z. The protein kinase activity of fructokinase A specifies the antioxidant responses of tumor cells by phosphorylating p62. Sci Adv 2019;5:eaav4570. [PMID: 31032410 DOI: 10.1126/sciadv.aav4570] [Cited by in Crossref: 23] [Cited by in F6Publishing: 31] [Article Influence: 7.7] [Reference Citation Analysis]
574 Grandjean JMD, Plate L, Morimoto RI, Bollong MJ, Powers ET, Wiseman RL. Deconvoluting Stress-Responsive Proteostasis Signaling Pathways for Pharmacologic Activation Using Targeted RNA Sequencing. ACS Chem Biol 2019;14:784-95. [PMID: 30821953 DOI: 10.1021/acschembio.9b00134] [Cited by in Crossref: 29] [Cited by in F6Publishing: 16] [Article Influence: 9.7] [Reference Citation Analysis]
575 Riebeling C, Luch A, Tralau T. Skin toxicology and 3Rs-Current challenges for public health protection. Exp Dermatol 2018;27:526-36. [PMID: 29575089 DOI: 10.1111/exd.13536] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
576 Reisman SA, Gahir SS, Lee CI, Proksch JW, Sakamoto M, Ward KW. Pharmacokinetics and pharmacodynamics of the novel Nrf2 activator omaveloxolone in primates. Drug Des Devel Ther 2019;13:1259-70. [PMID: 31118567 DOI: 10.2147/DDDT.S193889] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
577 Pomatto LCD, Sun PY, Yu K, Gullapalli S, Bwiza CP, Sisliyan C, Wong S, Zhang H, Forman HJ, Oliver PL, Davies KE, Davies KJA. Limitations to adaptive homeostasis in an hyperoxia-induced model of accelerated ageing. Redox Biol 2019;24:101194. [PMID: 31022673 DOI: 10.1016/j.redox.2019.101194] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
578 Singh N, Savanur MA, Srivastava S, D'Silva P, Mugesh G. A manganese oxide nanozyme prevents the oxidative damage of biomolecules without affecting the endogenous antioxidant system. Nanoscale 2019;11:3855-63. [PMID: 30758009 DOI: 10.1039/c8nr09397k] [Cited by in Crossref: 46] [Cited by in F6Publishing: 57] [Article Influence: 15.3] [Reference Citation Analysis]
579 Gao P, Zhou M, Ouyang Y, Wang H. Activation of the nuclear factor erythroid 2-related factor 2-antioxidant response element signal in rats with diffuse axonal injury. NeuroReport 2019;30:389-96. [DOI: 10.1097/wnr.0000000000001210] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
580 Zhang L, Li Q, Liu W, Liu Z, Shen H, Zhao M. Mesenchymal Stem Cells Alleviate Acute Lung Injury and Inflammatory Responses Induced by Paraquat Poisoning. Med Sci Monit 2019;25:2623-32. [PMID: 30967525 DOI: 10.12659/MSM.915804] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
581 Mimura J, Inose-Maruyama A, Taniuchi S, Kosaka K, Yoshida H, Yamazaki H, Kasai S, Harada N, Kaufman RJ, Oyadomari S, Itoh K. Concomitant Nrf2- and ATF4-activation by Carnosic Acid Cooperatively Induces Expression of Cytoprotective Genes. Int J Mol Sci 2019;20:E1706. [PMID: 30959808 DOI: 10.3390/ijms20071706] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
582 Shen B, Zhao C, Wang Y, Peng Y, Cheng J, Li Z, Wu L, Jin M, Feng H. Aucubin inhibited lipid accumulation and oxidative stress via Nrf2/HO-1 and AMPK signalling pathways. J Cell Mol Med 2019;23:4063-75. [PMID: 30950217 DOI: 10.1111/jcmm.14293] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 8.7] [Reference Citation Analysis]
583 Basagni F, Lanni C, Minarini A, Rosini M. Lights and shadows of electrophile signaling: focus on the Nrf2-Keap1 pathway. Future Med Chem 2019;11:707-21. [PMID: 30942112 DOI: 10.4155/fmc-2018-0423] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
584 Khadrawy O, Gebremedhn S, Salilew-Wondim D, Taqi MO, Neuhoff C, Tholen E, Hoelker M, Schellander K, Tesfaye D. Endogenous and Exogenous Modulation of Nrf2 Mediated Oxidative Stress Response in Bovine Granulosa Cells: Potential Implication for Ovarian Function. Int J Mol Sci 2019;20:E1635. [PMID: 30986945 DOI: 10.3390/ijms20071635] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
585 Lee D, Xu IM, Chiu DK, Leibold J, Tse AP, Bao MH, Yuen VW, Chan CY, Lai RK, Chin DW, Chan DF, Cheung TT, Chok SH, Wong CM, Lowe SW, Ng IO, Wong CC. Induction of Oxidative Stress Through Inhibition of Thioredoxin Reductase 1 Is an Effective Therapeutic Approach for Hepatocellular Carcinoma. Hepatology 2019;69:1768-86. [PMID: 30561826 DOI: 10.1002/hep.30467] [Cited by in Crossref: 59] [Cited by in F6Publishing: 63] [Article Influence: 19.7] [Reference Citation Analysis]
586 Manda G, Hinescu ME, Neagoe IV, Ferreira LF, Boscencu R, Vasos P, Basaga SH, Cuadrado A. Emerging Therapeutic Targets in Oncologic Photodynamic Therapy. CPD 2019;24:5268-95. [DOI: 10.2174/1381612825666190122163832] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
587 Muller P, Coates PJ, Nenutil R, Trcka F, Hrstka R, Chovanec J, Brychtova V, Vojtesek B. Tomm34 is commonly expressed in epithelial ovarian cancer and associates with tumour type and high FIGO stage. J Ovarian Res 2019;12:30. [PMID: 30917858 DOI: 10.1186/s13048-019-0498-0] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
588 Maynard ME, Underwood EL, Redell JB, Zhao J, Kobori N, Hood KN, Moore AN, Dash PK. Carnosic Acid Improves Outcome after Repetitive Mild Traumatic Brain Injury. J Neurotrauma 2019;36:2147-52. [PMID: 30672378 DOI: 10.1089/neu.2018.6155] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
589 Long MJ, Liu X, Aye Y. Genie in a bottle: controlled release helps tame natural polypharmacology? Curr Opin Chem Biol 2019;51:48-56. [PMID: 30913473 DOI: 10.1016/j.cbpa.2019.02.014] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
590 Joo MS, Shin SB, Kim EJ, Koo JH, Yim H, Kim SG. Nrf2-lncRNA controls cell fate by modulating p53-dependent Nrf2 activation as an miRNA sponge for Plk2 and p21cip1. FASEB J 2019;33:7953-69. [PMID: 30897343 DOI: 10.1096/fj.201802744R] [Cited by in Crossref: 12] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
591 Simaan H, Lev S, Horwitz BA. Oxidant-Sensing Pathways in the Responses of Fungal Pathogens to Chemical Stress Signals. Front Microbiol 2019;10:567. [PMID: 30941117 DOI: 10.3389/fmicb.2019.00567] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
592 Silva-Islas CA, Chánez-Cárdenas ME, Barrera-Oviedo D, Ibarra-Rubio ME, Maldonado PD. Acute expression of the transcription factor Nrf2 after treatment with quinolinic acid is not induced by oxidative stress in the rat striatum. Neurotoxicology 2019;73:120-31. [PMID: 30876764 DOI: 10.1016/j.neuro.2019.03.003] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
593 Cameron AM, Castoldi A, Sanin DE, Flachsmann LJ, Field CS, Puleston DJ, Kyle RL, Patterson AE, Hässler F, Buescher JM, Kelly B, Pearce EL, Pearce EJ. Inflammatory macrophage dependence on NAD+ salvage is a consequence of reactive oxygen species-mediated DNA damage. Nat Immunol 2019;20:420-32. [PMID: 30858618 DOI: 10.1038/s41590-019-0336-y] [Cited by in Crossref: 69] [Cited by in F6Publishing: 86] [Article Influence: 23.0] [Reference Citation Analysis]
594 Dikovskaya D, Appleton PL, Bento-Pereira C, Dinkova-Kostova AT. Measuring the Interaction of Transcription Factor Nrf2 with Its Negative Regulator Keap1 in Single Live Cells by an Improved FRET/FLIM Analysis. Chem Res Toxicol 2019;32:500-12. [PMID: 30793592 DOI: 10.1021/acs.chemrestox.8b00354] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
595 Liu L, Locascio LM, Doré S. Critical Role of Nrf2 in Experimental Ischemic Stroke. Front Pharmacol 2019;10:153. [PMID: 30890934 DOI: 10.3389/fphar.2019.00153] [Cited by in Crossref: 43] [Cited by in F6Publishing: 62] [Article Influence: 14.3] [Reference Citation Analysis]
596 Luo M, Wicha MS. Targeting Cancer Stem Cell Redox Metabolism to Enhance Therapy Responses. Semin Radiat Oncol. 2019;29:42-54. [PMID: 30573183 DOI: 10.1016/j.semradonc.2018.10.003] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 8.3] [Reference Citation Analysis]
597 Ofman G, Tipple TE. Thiol-Redox Regulation in Lung Development and Vascular Remodeling. Antioxid Redox Signal 2019;31:858-73. [PMID: 30648397 DOI: 10.1089/ars.2018.7712] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
598 Niu N, Xu S, Xu Y, Little PJ, Jin ZG. Targeting Mechanosensitive Transcription Factors in Atherosclerosis. Trends Pharmacol Sci 2019;40:253-66. [PMID: 30826122 DOI: 10.1016/j.tips.2019.02.004] [Cited by in Crossref: 45] [Cited by in F6Publishing: 47] [Article Influence: 15.0] [Reference Citation Analysis]
599 Fetoni AR, Paciello F, Rolesi R, Paludetti G, Troiani D. Targeting dysregulation of redox homeostasis in noise-induced hearing loss: Oxidative stress and ROS signaling. Free Radic Biol Med 2019;135:46-59. [PMID: 30802489 DOI: 10.1016/j.freeradbiomed.2019.02.022] [Cited by in Crossref: 43] [Cited by in F6Publishing: 63] [Article Influence: 14.3] [Reference Citation Analysis]
600 Sato T, Yamashina S, Izumi K, Ueno T, Koike M, Ikejima K, Peters C, Watanabe S. Cathepsin L-deficiency enhances liver regeneration after partial hepatectomy. Life Sci 2019;221:293-300. [PMID: 30797017 DOI: 10.1016/j.lfs.2019.02.040] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
601 Moreno-Fernandez J, Alférez MJM, López-Aliaga I, Diaz-Castro J. Protective effects of fermented goat milk on genomic stability, oxidative stress and inflammatory signalling in testis during anaemia recovery. Sci Rep 2019;9:2232. [PMID: 30783147 DOI: 10.1038/s41598-018-37649-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
602 Zhang Q, Zhang ZY, Du H, Li SZ, Tu R, Jia YF, Zheng Z, Song XM, Du RL, Zhang XD. DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer. Cell Death Differ 2019;26:2300-13. [PMID: 30778200 DOI: 10.1038/s41418-019-0303-z] [Cited by in Crossref: 25] [Cited by in F6Publishing: 38] [Article Influence: 8.3] [Reference Citation Analysis]
603 Noe JT, Mitchell RA. Tricarboxylic acid cycle metabolites in the control of macrophage activation and effector phenotypes. J Leukoc Biol 2019;106:359-67. [DOI: 10.1002/jlb.3ru1218-496r] [Cited by in Crossref: 10] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
604 Modi SR, Kokkola T. Strigolactone GR24 upregulates target genes of the cytoprotective transcription factor Nrf2 in skeletal muscle. F1000Res 2018;7:1459. [PMID: 30728949 DOI: 10.12688/f1000research.16172.2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
605 Janssen JJE, Grefte S, Keijer J, de Boer VCJ. Mito-Nuclear Communication by Mitochondrial Metabolites and Its Regulation by B-Vitamins. Front Physiol 2019;10:78. [PMID: 30809153 DOI: 10.3389/fphys.2019.00078] [Cited by in Crossref: 16] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
606 Saidu NEB, Kavian N, Leroy K, Jacob C, Nicco C, Batteux F, Alexandre J. Dimethyl fumarate, a two-edged drug: Current status and future directions. Med Res Rev 2019;39:1923-52. [PMID: 30756407 DOI: 10.1002/med.21567] [Cited by in Crossref: 40] [Cited by in F6Publishing: 57] [Article Influence: 13.3] [Reference Citation Analysis]
607 Wang J, Zhao J, Cui X, Mysona BA, Navneet S, Saul A, Ahuja M, Lambert N, Gazaryan IG, Thomas B, Bollinger KE, Smith SB. The molecular chaperone sigma 1 receptor mediates rescue of retinal cone photoreceptor cells via modulation of NRF2. Free Radic Biol Med 2019;134:604-16. [PMID: 30743048 DOI: 10.1016/j.freeradbiomed.2019.02.001] [Cited by in F6Publishing: 19] [Reference Citation Analysis]
608 Hori R, Yamaguchi K, Sato H, Watanabe M, Tsutsumi K, Iwamoto S, Abe M, Onodera H, Nakamura S, Nakai R. The discovery and characterization of K-563, a novel inhibitor of the Keap1/Nrf2 pathway produced by Streptomyces sp. Cancer Med 2019;8:1157-68. [PMID: 30735010 DOI: 10.1002/cam4.1949] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
609 Prusinkiewicz MA, Mymryk JS. Metabolic Reprogramming of the Host Cell by Human Adenovirus Infection. Viruses 2019;11:E141. [PMID: 30744016 DOI: 10.3390/v11020141] [Cited by in Crossref: 31] [Cited by in F6Publishing: 38] [Article Influence: 10.3] [Reference Citation Analysis]
610 Castro-Sánchez S, García-Yagüe ÁJ, Kügler S, Lastres-Becker I. CX3CR1-deficient microglia shows impaired signalling of the transcription factor NRF2: Implications in tauopathies. Redox Biol 2019;22:101118. [PMID: 30769286 DOI: 10.1016/j.redox.2019.101118] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
611 Wei H, Li H, Xia Y, Liu H, Han D, Zhu X, Yang Y, Jin J, Xie S. Effects of light intensity on phototaxis, growth, antioxidant and stress of juvenile gibel carp (Carassius auratus gibelio). Aquaculture 2019;501:39-47. [DOI: 10.1016/j.aquaculture.2018.10.055] [Cited by in Crossref: 14] [Cited by in F6Publishing: 3] [Article Influence: 4.7] [Reference Citation Analysis]
612 Li L, Fu J, Sun J, Liu D, Chen C, Wang H, Hou Y, Xu Y, Pi J. Is Nrf2-ARE a potential target in NAFLD mitigation? Current Opinion in Toxicology 2019;13:35-44. [DOI: 10.1016/j.cotox.2018.12.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
613 O’neill LAJ, Artyomov MN. Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat Rev Immunol 2019;19:273-81. [DOI: 10.1038/s41577-019-0128-5] [Cited by in Crossref: 125] [Cited by in F6Publishing: 163] [Article Influence: 41.7] [Reference Citation Analysis]
614 Huebbers CU, Verhees F, Poluschkin L, Olthof NC, Kolligs J, Siefer OG, Henfling M, Ramaekers FCS, Preuss SF, Beutner D, Seehawer J, Drebber U, Korkmaz Y, Lam WL, Vucic EA, Kremer B, Klussmann JP, Speel EM. Upregulation of AKR1C1 and AKR1C3 expression in OPSCC with integrated HPV16 and HPV-negative tumors is an indicator of poor prognosis. Int J Cancer 2019;144:2465-77. [PMID: 30367463 DOI: 10.1002/ijc.31954] [Cited by in Crossref: 12] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
615 Singh KB, Kim SH, Hahm ER, Pore SK, Jacobs BL, Singh SV. Prostate cancer chemoprevention by sulforaphane in a preclinical mouse model is associated with inhibition of fatty acid metabolism. Carcinogenesis 2018;39:826-37. [PMID: 29668854 DOI: 10.1093/carcin/bgy051] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]
616 Smirni S, McNeilly AD, MacDonald MP, McCrimmon RJ, Khan F. In-vivo correlations between skin metabolic oscillations and vasomotion in wild-type mice and in a model of oxidative stress. Sci Rep 2019;9:186. [PMID: 30655574 DOI: 10.1038/s41598-018-36970-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
617 Schmidlin CJ, Dodson MB, Madhavan L, Zhang DD. Redox regulation by NRF2 in aging and disease. Free Radic Biol Med 2019;134:702-7. [PMID: 30654017 DOI: 10.1016/j.freeradbiomed.2019.01.016] [Cited by in Crossref: 118] [Cited by in F6Publishing: 116] [Article Influence: 39.3] [Reference Citation Analysis]
618 Springer M, Moco S. Resveratrol and Its Human Metabolites-Effects on Metabolic Health and Obesity. Nutrients 2019;11:E143. [PMID: 30641865 DOI: 10.3390/nu11010143] [Cited by in Crossref: 113] [Cited by in F6Publishing: 93] [Article Influence: 37.7] [Reference Citation Analysis]
619 Lei P, Tian S, Teng C, Huang L, Liu X, Wang J, Zhang Y, Li B, Shan Y. Sulforaphane Improves Lipid Metabolism by Enhancing Mitochondrial Function and Biogenesis In Vivo and In Vitro. Mol Nutr Food Res 2019;63:e1800795. [PMID: 30578708 DOI: 10.1002/mnfr.201800795] [Cited by in Crossref: 25] [Cited by in F6Publishing: 35] [Article Influence: 8.3] [Reference Citation Analysis]
620 Samuelsen JT, Michelsen VB, Bruun J, Dahl JE, Jensen E, Örtengren U. The dental monomer HEMA causes proteome changes in human THP-1 monocytes: The dental monomer HEMA causes proteome changes in human THP-1 monocytes. J Biomed Mater Res 2019;107:851-9. [DOI: 10.1002/jbm.a.36601] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
621 Zhang C, Zhang QZ, Zhang K, Li LY, Pluth MD, Yi L, Xi Z. Dual-biomarker-triggered fluorescence probes for differentiating cancer cells and revealing synergistic antioxidant effects under oxidative stress. Chem Sci 2019;10:1945-52. [PMID: 30931093 DOI: 10.1039/c8sc03781g] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 13.3] [Reference Citation Analysis]
622 Staurengo-Ferrari L, Badaro-Garcia S, Hohmann MSN, Manchope MF, Zaninelli TH, Casagrande R, Verri WA Jr. Contribution of Nrf2 Modulation to the Mechanism of Action of Analgesic and Anti-inflammatory Drugs in Pre-clinical and Clinical Stages. Front Pharmacol 2018;9:1536. [PMID: 30687097 DOI: 10.3389/fphar.2018.01536] [Cited by in Crossref: 36] [Cited by in F6Publishing: 55] [Article Influence: 12.0] [Reference Citation Analysis]
623 Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 2019;23:101107. [PMID: 30692038 DOI: 10.1016/j.redox.2019.101107] [Cited by in Crossref: 164] [Cited by in F6Publishing: 166] [Article Influence: 54.7] [Reference Citation Analysis]
624 Kim D, Kim HJ, Cha SH, Jun HS. Protective Effects of Broussonetia kazinoki Siebold Fruit Extract against Palmitate-Induced Lipotoxicity in Mesangial Cells. Evid Based Complement Alternat Med 2019;2019:4509403. [PMID: 30728845 DOI: 10.1155/2019/4509403] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
625 Kavalappa YP, Udayawara Rudresh D, Gopal SS, Haranahalli Shivarudrappa A, Stephen NM, Rangiah K, Ponesakki G. β-carotene isolated from the marine red alga, Gracillaria sp. potently attenuates the growth of human hepatocellular carcinoma (HepG2) cells by modulating multiple molecular pathways. Journal of Functional Foods 2019;52:165-76. [DOI: 10.1016/j.jff.2018.11.015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
626 Becher R, Valen H, Olderbø BP, Bølling AK, Samuelsen JT. The dental monomer 2-hydroxyethyl methacrylate (HEMA) causes transcriptionally regulated adaptation partially initiated by electrophilic stress. Dental Materials 2019;35:125-34. [DOI: 10.1016/j.dental.2018.11.008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
627 Li T, Li Q, Wu W, Li Y, Hou DX, Xu H, Zheng B, Zeng S, Shan Y, Lu X, Deng F, Qin S. Lotus seed skin proanthocyanidin extract exhibits potent antioxidant property via activation of the Nrf2-ARE pathway. Acta Biochim Biophys Sin (Shanghai) 2019;51:31-40. [PMID: 30544155 DOI: 10.1093/abbs/gmy148] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
628 Zhu J, Wang Q, Li C, Lu Y, Hu H, Qin B, Xun Y, Zhu Y, Wu Y, Zhang J, Wang S. Inhibiting inflammation and modulating oxidative stress in oxalate-induced nephrolithiasis with the Nrf2 activator dimethyl fumarate. Free Radic Biol Med 2019;134:9-22. [PMID: 30599261 DOI: 10.1016/j.freeradbiomed.2018.12.033] [Cited by in Crossref: 22] [Cited by in F6Publishing: 26] [Article Influence: 5.5] [Reference Citation Analysis]
629 Kibe S, Ohuchida K, Ando Y, Takesue S, Nakayama H, Abe T, Endo S, Koikawa K, Okumura T, Iwamoto C, Shindo K, Moriyama T, Nakata K, Miyasaka Y, Shimamoto M, Ohtsuka T, Mizumoto K, Oda Y, Nakamura M. Cancer-associated acinar-to-ductal metaplasia within the invasive front of pancreatic cancer contributes to local invasion. Cancer Lett 2019;444:70-81. [PMID: 30590101 DOI: 10.1016/j.canlet.2018.12.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
630 Hu DG, Marri S, McKinnon RA, Mackenzie PI, Meech R. Deregulation of the Genes that Are Involved in Drug Absorption, Distribution, Metabolism, and Excretion in Hepatocellular Carcinoma. J Pharmacol Exp Ther 2019;368:363-81. [PMID: 30578287 DOI: 10.1124/jpet.118.255018] [Cited by in Crossref: 21] [Cited by in F6Publishing: 28] [Article Influence: 5.3] [Reference Citation Analysis]
631 Fischer W, Currais A, Liang Z, Pinto A, Maher P. Old age-associated phenotypic screening for Alzheimer's disease drug candidates identifies sterubin as a potent neuroprotective compound from Yerba santa. Redox Biol 2019;21:101089. [PMID: 30594901 DOI: 10.1016/j.redox.2018.101089] [Cited by in Crossref: 18] [Cited by in F6Publishing: 12] [Article Influence: 4.5] [Reference Citation Analysis]
632 Wu C, Chen J, Yang R, Duan F, Li S, Chen X. Mitochondrial protective effect of neferine through the modulation of nuclear factor erythroid 2-related factor 2 signalling in ischaemic stroke. Br J Pharmacol 2019;176:400-15. [PMID: 30414381 DOI: 10.1111/bph.14537] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
633 Bedini A, Fraternale A, Crinelli R, Mari M, Bartolucci S, Chiarantini L, Spadoni G. Design, Synthesis, and Biological Activity of Hydrogen Peroxide Responsive Arylboronate Melatonin Hybrids. Chem Res Toxicol 2019;32:100-12. [DOI: 10.1021/acs.chemrestox.8b00216] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
634 Marrazzo P, Angeloni C, Freschi M, Lorenzini A, Prata C, Maraldi T, Hrelia S. Combination of Epigallocatechin Gallate and Sulforaphane Counteracts In Vitro Oxidative Stress and Delays Stemness Loss of Amniotic Fluid Stem Cells. Oxid Med Cell Longev 2018;2018:5263985. [PMID: 30647811 DOI: 10.1155/2018/5263985] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
635 Tuo L, Xiang J, Pan X, Gao Q, Zhang G, Yang Y, Liang L, Xia J, Wang K, Tang N. PCK1 Downregulation Promotes TXNRD1 Expression and Hepatoma Cell Growth via the Nrf2/Keap1 Pathway. Front Oncol 2018;8:611. [PMID: 30619751 DOI: 10.3389/fonc.2018.00611] [Cited by in Crossref: 13] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
636 Vaziri-Gohar A, Zarei M, Brody JR, Winter JM. Metabolic Dependencies in Pancreatic Cancer. Front Oncol. 2018;8:617. [PMID: 30631752 DOI: 10.3389/fonc.2018.00617] [Cited by in Crossref: 28] [Cited by in F6Publishing: 33] [Article Influence: 7.0] [Reference Citation Analysis]
637 Yu XH, Zhang DW, Zheng XL, Tang CK. Itaconate: an emerging determinant of inflammation in activated macrophages. Immunol Cell Biol 2019;97:134-41. [PMID: 30428148 DOI: 10.1111/imcb.12218] [Cited by in Crossref: 15] [Cited by in F6Publishing: 27] [Article Influence: 3.8] [Reference Citation Analysis]
638 Ou W, Liao Z, Yu G, Xu H, Liang M, Mai K, Zhang Y. The effects of dietary astaxanthin on intestinal health of juvenile tiger puffer Takifugu rubripes in terms of antioxidative status, inflammatory response and microbiota. Aquacult Nutr 2018. [DOI: 10.1111/anu.12872] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
639 Liu H, Dong Y, Gao Y, Zhao L, Cai C, Qi D, Zhu M, Zhao L, Liu C, Guo F, Xiao J, Huang H. Hesperetin suppresses RANKL-induced osteoclastogenesis and ameliorates lipopolysaccharide-induced bone loss. J Cell Physiol 2019;234:11009-22. [PMID: 30548260 DOI: 10.1002/jcp.27924] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 2.8] [Reference Citation Analysis]
640 Wandee J, Prawan A, Senggunprai L, Kongpetch S, Kukongviriyapan V. Metformin sensitizes cholangiocarcinoma cell to cisplatin-induced cytotoxicity through oxidative stress mediated mitochondrial pathway. Life Sci 2019;217:155-63. [PMID: 30528773 DOI: 10.1016/j.lfs.2018.12.007] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
641 Mcmahon M, Swift SR, Hayes JD. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2. Toxicology and Applied Pharmacology 2018;360:45-57. [DOI: 10.1016/j.taap.2018.09.033] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
642 Tocmo R, Parkin K. S-Alk(en)ylmercaptocysteine suppresses LPS-induced pro-inflammatory responses in murine macrophages through inhibition of NF-κB pathway and modulation of thiol redox status. Free Radical Biology and Medicine 2018;129:548-58. [DOI: 10.1016/j.freeradbiomed.2018.10.424] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
643 Ikehata H, Yamamoto M. Roles of the KEAP1-NRF2 system in mammalian skin exposed to UV radiation. Toxicology and Applied Pharmacology 2018;360:69-77. [DOI: 10.1016/j.taap.2018.09.038] [Cited by in Crossref: 24] [Cited by in F6Publishing: 30] [Article Influence: 6.0] [Reference Citation Analysis]
644 Chong SJF, Lai JXH, Eu JQ, Bellot GL, Pervaiz S. Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison. Antioxidants & Redox Signaling 2018;29:1553-88. [DOI: 10.1089/ars.2017.7441] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
645 Sivandzade F, Prasad S, Bhalerao A, Cucullo L. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol 2019;21:101059. [PMID: 30576920 DOI: 10.1016/j.redox.2018.11.017] [Cited by in Crossref: 149] [Cited by in F6Publishing: 148] [Article Influence: 37.3] [Reference Citation Analysis]
646 Jiang ZY, Lu MC, You QD. Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Inhibition: An Emerging Strategy in Cancer Therapy. J Med Chem 2019;62:3840-56. [PMID: 30444366 DOI: 10.1021/acs.jmedchem.8b01121] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
647 Andjelković A, Mordas A, Bruinsma L, Ketola A, Cannino G, Giordano L, Dhandapani PK, Szibor M, Dufour E, Jacobs HT. Expression of the Alternative Oxidase Influences Jun N-Terminal Kinase Signaling and Cell Migration. Mol Cell Biol 2018;38:e00110-18. [PMID: 30224521 DOI: 10.1128/MCB.00110-18] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
648 Jobbagy S, Vitturi DA, Salvatore SR, Turell L, Pires MF, Kansanen E, Batthyany C, Lancaster JR Jr, Freeman BA, Schopfer FJ. Electrophiles modulate glutathione reductase activity via alkylation and upregulation of glutathione biosynthesis. Redox Biol 2019;21:101050. [PMID: 30654300 DOI: 10.1016/j.redox.2018.11.008] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
649 Wafi AM, Hong J, Rudebush TL, Yu L, Hackfort B, Wang H, Schultz HD, Zucker IH, Gao L. Curcumin improves exercise performance of mice with coronary artery ligation-induced HFrEF: Nrf2 and antioxidant mechanisms in skeletal muscle. J Appl Physiol (1985) 2019;126:477-86. [PMID: 30462567 DOI: 10.1152/japplphysiol.00654.2018] [Cited by in Crossref: 17] [Cited by in F6Publishing: 24] [Article Influence: 4.3] [Reference Citation Analysis]
650 Ding X, Jian T, Wu Y, Zuo Y, Li J, Lv H, Ma L, Ren B, Zhao L, Li W, Chen J. Ellagic acid ameliorates oxidative stress and insulin resistance in high glucose-treated HepG2 cells via miR-223/keap1-Nrf2 pathway. Biomed Pharmacother 2019;110:85-94. [PMID: 30466006 DOI: 10.1016/j.biopha.2018.11.018] [Cited by in Crossref: 40] [Cited by in F6Publishing: 40] [Article Influence: 10.0] [Reference Citation Analysis]
651 Alonso I, Matos A, Ribeiro R, Gil Â, Cardoso C, Sardinha LB, Bicho M. Mountain Cycling Ultramarathon Effects on Inflammatory and Hemoglobin Responses. Med Sci Sports Exerc 2018;50:353-60. [PMID: 28991044 DOI: 10.1249/MSS.0000000000001440] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
652 Sepidarkish M, Farsi F, Akbari-Fakhrabadi M, Namazi N, Almasi-Hashiani A, Maleki Hagiagha A, Heshmati J. The effect of vitamin D supplementation on oxidative stress parameters: A systematic review and meta-analysis of clinical trials. Pharmacol Res 2019;139:141-52. [PMID: 30447293 DOI: 10.1016/j.phrs.2018.11.011] [Cited by in Crossref: 34] [Cited by in F6Publishing: 39] [Article Influence: 8.5] [Reference Citation Analysis]
653 Nakamura H, Takada K, Arihara Y, Hayasaka N, Murase K, Iyama S, Kobune M, Miyanishi K, Kato J. Six-transmembrane epithelial antigen of the prostate 1 protects against increased oxidative stress via a nuclear erythroid 2-related factor pathway in colorectal cancer. Cancer Gene Ther 2019;26:313-22. [PMID: 30401882 DOI: 10.1038/s41417-018-0056-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
654 Yusuf IO, Chen HM, Cheng PH, Chang CY, Tsai SJ, Chuang JI, Wu CC, Huang BM, Sun HS, Yang SH. Fibroblast growth factor 9 activates anti-oxidative functions of Nrf2 through ERK signalling in striatal cell models of Huntington's disease. Free Radic Biol Med 2019;130:256-66. [PMID: 30391672 DOI: 10.1016/j.freeradbiomed.2018.10.455] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
655 Vasileva LV, Marchev AS, Georgiev MI. Causes and solutions to “globesity”: The new fa(s)t alarming global epidemic. Food and Chemical Toxicology 2018;121:173-93. [DOI: 10.1016/j.fct.2018.08.071] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 6.0] [Reference Citation Analysis]
656 Li H, Li D, He Z, Fan J, Li Q, Liu X, Guo P, Zhang H, Chen S, Li Q, Zhang R, Xing X, Zeng X, Zhang A, Tang H, Dong G, Wang Q, Xiao Y, Chen L, Chen W. The effects of Nrf2 knockout on regulation of benzene-induced mouse hematotoxicity. Toxicology and Applied Pharmacology 2018;358:56-67. [DOI: 10.1016/j.taap.2018.09.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
657 Wang Y, Xia Y, Lu Z. Metabolic features of cancer cells. Cancer Commun (Lond) 2018;38:65. [PMID: 30376896 DOI: 10.1186/s40880-018-0335-7] [Cited by in Crossref: 47] [Cited by in F6Publishing: 53] [Article Influence: 11.8] [Reference Citation Analysis]
658 Ke T, Gonçalves FM, Gonçalves CL, dos Santos AA, Rocha JB, Farina M, Skalny A, Tsatsakis A, Bowman AB, Aschner M. Post-translational modifications in MeHg-induced neurotoxicity. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2019;1865:2068-81. [DOI: 10.1016/j.bbadis.2018.10.024] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
659 Negi CK, Jena G. Nrf2, a novel molecular target to reduce type 1 diabetes associated secondary complications: The basic considerations. Eur J Pharmacol 2019;843:12-26. [PMID: 30359563 DOI: 10.1016/j.ejphar.2018.10.026] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
660 Rabbani PS, Soares MA, Hameedi SG, Kadle RL, Mubasher A, Kowzun M, Ceradini DJ. Dysregulation of Nrf2/Keap1 Redox Pathway in Diabetes Affects Multipotency of Stromal Cells. Diabetes 2019;68:141-55. [PMID: 30352880 DOI: 10.2337/db18-0232] [Cited by in Crossref: 25] [Cited by in F6Publishing: 35] [Article Influence: 6.3] [Reference Citation Analysis]
661 Shin D, Kim EH, Lee J, Roh JL. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med 2018;129:454-62. [PMID: 30339884 DOI: 10.1016/j.freeradbiomed.2018.10.426] [Cited by in Crossref: 92] [Cited by in F6Publishing: 161] [Article Influence: 23.0] [Reference Citation Analysis]
662 Zhong L, Hao H, Chen D, Hou Q, Zhu Z, He W, Sun S, Sun M, Li M, Fu X. Arsenic trioxide inhibits the differentiation of fibroblasts to myofibroblasts through nuclear factor erythroid 2‐like 2 (NFE2L2) protein and the Smad2/3 pathway. J Cell Physiol 2018;234:2606-17. [DOI: 10.1002/jcp.27073] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
663 Liu X, Long MJC, Aye Y. Proteomics and Beyond: Cell Decision-Making Shaped by Reactive Electrophiles. Trends Biochem Sci 2019;44:75-89. [PMID: 30327250 DOI: 10.1016/j.tibs.2018.09.014] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
664 Pinto A, El Ali Z, Moniot S, Tamborini L, Steegborn C, Foresti R, De Micheli C. Effects of 3-Bromo-4,5-dihydroisoxazole Derivatives on Nrf2 Activation and Heme Oxygenase-1 Expression. ChemistryOpen 2018;7:858-64. [PMID: 30397576 DOI: 10.1002/open.201800185] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
665 Zhang LC, Wang Y, Liu W, Zhang XM, Fan M, Zhao M. Protective effects of SOD2 overexpression in human umbilical cord mesenchymal stem cells on lung injury induced by acute paraquat poisoning in rats. Life Sci 2018;214:11-21. [PMID: 30321544 DOI: 10.1016/j.lfs.2018.10.020] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
666 Paul S, Ghosh S, Mandal S, Sau S, Pal M. NRF2 transcriptionally activates the heat shock factor 1 promoter under oxidative stress and affects survival and migration potential of MCF7 cells. J Biol Chem 2018;293:19303-16. [PMID: 30309986 DOI: 10.1074/jbc.RA118.003376] [Cited by in Crossref: 25] [Cited by in F6Publishing: 29] [Article Influence: 6.3] [Reference Citation Analysis]
667 Liu P, Rojo de la Vega M, Sammani S, Mascarenhas JB, Kerins M, Dodson M, Sun X, Wang T, Ooi A, Garcia JGN, Zhang DD. RPA1 binding to NRF2 switches ARE-dependent transcriptional activation to ARE-NRE-dependent repression. Proc Natl Acad Sci U S A 2018;115:E10352-61. [PMID: 30309964 DOI: 10.1073/pnas.1812125115] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
668 Berky AJ, Ryde IT, Feingold B, Ortiz EJ, Wyatt LH, Weinhouse C, Hsu-Kim H, Meyer JN, Pan WK. Predictors of mitochondrial DNA copy number and damage in a mercury-exposed rural Peruvian population near artisanal and small-scale gold mining: An exploratory study. Environ Mol Mutagen 2019;60:197-210. [PMID: 30289587 DOI: 10.1002/em.22244] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
669 Yi J, Yuan Y, Zheng J, Hu N. Hydrogen sulfide alleviates uranium-induced kidney cell apoptosis mediated by ER stress via 20S proteasome involving in Akt/GSK-3β/Fyn-Nrf2 signaling. Free Radical Research 2018;52:1020-9. [DOI: 10.1080/10715762.2018.1514603] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
670 van Raaij S, Masereeuw R, Swinkels D, van Swelm R. Inhibition of Nrf2 alters cell stress induced by chronic iron exposure in human proximal tubular epithelial cells. Toxicology Letters 2018;295:179-86. [DOI: 10.1016/j.toxlet.2018.06.1218] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
671 Lin P, Ren Y, Yan X, Luo Y, Zhang H, Kesarwani M, Bu J, Zhan D, Zhou Y, Tang Y, Zhu S, Xu W, Zhou X, Mei C, Ma L, Ye L, Hu C, Azam M, Ding W, Jin J, Huang G, Tong H. The high NRF2 expression confers chemotherapy resistance partly through up-regulated DUSP1 in myelodysplastic syndromes. Haematologica 2019;104:485-96. [PMID: 30262569 DOI: 10.3324/haematol.2018.197749] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 3.3] [Reference Citation Analysis]
672 Dodson M, de la Vega MR, Cholanians AB, Schmidlin CJ, Chapman E, Zhang DD. Modulating NRF2 in Disease: Timing Is Everything. Annu Rev Pharmacol Toxicol 2019;59:555-75. [PMID: 30256716 DOI: 10.1146/annurev-pharmtox-010818-021856] [Cited by in Crossref: 94] [Cited by in F6Publishing: 137] [Article Influence: 23.5] [Reference Citation Analysis]
673 Liu D, Xue J, Liu Y, Gu H, Wei X, Ma W, Luo W, Ma L, Jia S, Dong N, Huang J, Wang Y, Yuan Z. Inhibition of NRF2 signaling and increased reactive oxygen species during embryogenesis in a rat model of retinoic acid-induced neural tube defects. Neurotoxicology 2018;69:84-92. [PMID: 30267739 DOI: 10.1016/j.neuro.2018.09.005] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
674 Gergues MM, Moiseyenko A, Saad SZ, Kong AN, Wagner GC. Nrf2 deletion results in impaired performance in memory tasks and hyperactivity in mature and aged mice. Brain Res 2018;1701:103-11. [PMID: 30194014 DOI: 10.1016/j.brainres.2018.08.033] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
675 Steel RJ, O'connell MA, Searcey M. Perfluoroarene-based peptide macrocycles that inhibit the Nrf2/Keap1 interaction. Bioorganic & Medicinal Chemistry Letters 2018;28:2728-31. [DOI: 10.1016/j.bmcl.2018.03.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
676 Zeng N, D'souza RF, Mitchell CJ, Cameron-smith D. Sestrins are differentially expressed with age in the skeletal muscle of men: A cross-sectional analysis. Experimental Gerontology 2018;110:23-34. [DOI: 10.1016/j.exger.2018.05.006] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
677 Xu L, Wu Y, Wang L, Li C, Li L, Di B, You Q, Jiang Z. Structure-activity and structure-property relationships of novel Nrf2 activators with a 1,2,4-oxadiazole core and their therapeutic effects on acetaminophen (APAP)-induced acute liver injury. European Journal of Medicinal Chemistry 2018;157:1376-94. [DOI: 10.1016/j.ejmech.2018.08.071] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
678 Olagnier D, Brandtoft AM, Gunderstofte C, Villadsen NL, Krapp C, Thielke AL, Laustsen A, Peri S, Hansen AL, Bonefeld L, Thyrsted J, Bruun V, Iversen MB, Lin L, Artegoitia VM, Su C, Yang L, Lin R, Balachandran S, Luo Y, Nyegaard M, Marrero B, Goldbach-Mansky R, Motwani M, Ryan DG, Fitzgerald KA, O'Neill LA, Hollensen AK, Damgaard CK, de Paoli FV, Bertram HC, Jakobsen MR, Poulsen TB, Holm CK. Nrf2 negatively regulates STING indicating a link between antiviral sensing and metabolic reprogramming. Nat Commun 2018;9:3506. [PMID: 30158636 DOI: 10.1038/s41467-018-05861-7] [Cited by in Crossref: 73] [Cited by in F6Publishing: 93] [Article Influence: 18.3] [Reference Citation Analysis]
679 Kloska D, Kopacz A, Piechota-Polanczyk A, Nowak WN, Dulak J, Jozkowicz A, Grochot-Przeczek A. Nrf2 in aging - Focus on the cardiovascular system. Vascul Pharmacol 2019;112:42-53. [PMID: 30170173 DOI: 10.1016/j.vph.2018.08.009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
680 Cannino G, Ciscato F, Masgras I, Sánchez-Martín C, Rasola A. Metabolic Plasticity of Tumor Cell Mitochondria. Front Oncol 2018;8:333. [PMID: 30197878 DOI: 10.3389/fonc.2018.00333] [Cited by in Crossref: 54] [Cited by in F6Publishing: 51] [Article Influence: 13.5] [Reference Citation Analysis]
681 Sajja RK, Kaisar MA, Vijay V, Desai VG, Prasad S, Cucullo L. In Vitro Modulation of Redox and Metabolism Interplay at the Brain Vascular Endothelium: Genomic and Proteomic Profiles of Sulforaphane Activity. Sci Rep 2018;8:12708. [PMID: 30139948 DOI: 10.1038/s41598-018-31137-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 14] [Article Influence: 2.0] [Reference Citation Analysis]
682 Levings DC, Wang X, Kohlhase D, Bell DA, Slattery M. A distinct class of antioxidant response elements is consistently activated in tumors with NRF2 mutations. Redox Biol 2018;19:235-49. [PMID: 30195190 DOI: 10.1016/j.redox.2018.07.026] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
683 Yong CQY, Tang BL. A Mitochondrial Encoded Messenger at the Nucleus. Cells 2018;7:E105. [PMID: 30104535 DOI: 10.3390/cells7080105] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
684 Pruimboom L, Muskiet FAJ. Intermittent living; the use of ancient challenges as a vaccine against the deleterious effects of modern life - A hypothesis. Med Hypotheses 2018;120:28-42. [PMID: 30220336 DOI: 10.1016/j.mehy.2018.08.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
685 Deen AJ, Sihvola V, Härkönen J, Patinen T, Adinolfi S, Levonen A. Regulation of stress signaling pathways by nitro-fatty acids. Nitric Oxide 2018;78:170-5. [DOI: 10.1016/j.niox.2018.03.012] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 3.5] [Reference Citation Analysis]
686 Best SA, Sutherland KD. "Keaping" a lid on lung cancer: the Keap1-Nrf2 pathway. Cell Cycle 2018;17:1696-707. [PMID: 30009666 DOI: 10.1080/15384101.2018.1496756] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 5.5] [Reference Citation Analysis]
687 Nitti M, Piras S, Brondolo L, Marinari UM, Pronzato MA, Furfaro AL. Heme Oxygenase 1 in the Nervous System: Does It Favor Neuronal Cell Survival or Induce Neurodegeneration? Int J Mol Sci 2018;19:E2260. [PMID: 30071692 DOI: 10.3390/ijms19082260] [Cited by in Crossref: 55] [Cited by in F6Publishing: 66] [Article Influence: 13.8] [Reference Citation Analysis]
688 Ameeramja J, Kanagaraj VV, Perumal E. Protocatechuic acid methyl ester modulates fluoride induced pulmonary toxicity in rats. Food and Chemical Toxicology 2018;118:235-44. [DOI: 10.1016/j.fct.2018.05.031] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
689 Pajares M, Rojo AI, Arias E, Díaz-Carretero A, Cuervo AM, Cuadrado A. Transcription factor NFE2L2/NRF2 modulates chaperone-mediated autophagy through the regulation of LAMP2A. Autophagy 2018;14:1310-22. [PMID: 29950142 DOI: 10.1080/15548627.2018.1474992] [Cited by in F6Publishing: 63] [Reference Citation Analysis]
690 Murray D, Mirzayans R, McBride WH. Defenses against Pro-oxidant Forces - Maintenance of Cellular and Genomic Integrity and Longevity. Radiat Res 2018;190:331-49. [PMID: 30040046 DOI: 10.1667/RR15101.1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
691 Surya SL, Long MJC, Urul DA, Zhao Y, Mercer EJ, EIsaid IM, Evans T, Aye Y. Cardiovascular Small Heat Shock Protein HSPB7 Is a Kinetically Privileged Reactive Electrophilic Species (RES) Sensor. ACS Chem Biol 2018;13:1824-31. [PMID: 29397684 DOI: 10.1021/acschembio.7b00925] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
692 Branca C, Ferreira E, Nguyen TV, Doyle K, Caccamo A, Oddo S. Genetic reduction of Nrf2 exacerbates cognitive deficits in a mouse model of Alzheimer's disease. Hum Mol Genet 2017;26:4823-35. [PMID: 29036636 DOI: 10.1093/hmg/ddx361] [Cited by in Crossref: 38] [Cited by in F6Publishing: 59] [Article Influence: 9.5] [Reference Citation Analysis]
693 de Oliveira MR, de Bittencourt Brasil F, Fürstenau CR. Inhibition of the Nrf2/HO-1 Axis Suppresses the Mitochondria-Related Protection Promoted by Gastrodin in Human Neuroblastoma Cells Exposed to Paraquat. Mol Neurobiol 2019;56:2174-84. [PMID: 29998398 DOI: 10.1007/s12035-018-1222-6] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
694 Gugliandolo A, Pollastro F, Grassi G, Bramanti P, Mazzon E. In Vitro Model of Neuroinflammation: Efficacy of Cannabigerol, a Non-Psychoactive Cannabinoid. Int J Mol Sci 2018;19:E1992. [PMID: 29986533 DOI: 10.3390/ijms19071992] [Cited by in Crossref: 27] [Cited by in F6Publishing: 38] [Article Influence: 6.8] [Reference Citation Analysis]
695 Kim KH, Son JM, Benayoun BA, Lee C. The Mitochondrial-Encoded Peptide MOTS-c Translocates to the Nucleus to Regulate Nuclear Gene Expression in Response to Metabolic Stress. Cell Metab 2018;28:516-524.e7. [PMID: 29983246 DOI: 10.1016/j.cmet.2018.06.008] [Cited by in Crossref: 76] [Cited by in F6Publishing: 75] [Article Influence: 19.0] [Reference Citation Analysis]
696 Jenkhetkan W, Thitiorul S, Jansom C, Ratanavalachai T. Molecular and cytogenetic effects of Thai royal jelly: modulation through c-MYC, h-TERT, NRF2, HO-1, BCL2, BAX and cyclins in human lymphocytes in vitro. Mutagenesis 2017;32:525-31. [PMID: 28992336 DOI: 10.1093/mutage/gex020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
697 Montoya T, Aparicio-soto M, Castejón ML, Rosillo MÁ, Sánchez-hidalgo M, Begines P, Fernández-bolaños JG, Alarcón-de-la-lastra C. Peracetylated hydroxytyrosol, a new hydroxytyrosol derivate, attenuates LPS-induced inflammatory response in murine peritoneal macrophages via regulation of non-canonical inflammasome, Nrf2/HO1 and JAK/STAT signaling pathways. The Journal of Nutritional Biochemistry 2018;57:110-20. [DOI: 10.1016/j.jnutbio.2018.03.014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 4.5] [Reference Citation Analysis]
698 Dayalan Naidu S, Suzuki T, Yamamoto M, Fahey JW, Dinkova-Kostova AT. Phenethyl Isothiocyanate, a Dual Activator of Transcription Factors NRF2 and HSF1. Mol Nutr Food Res 2018;62:e1700908. [PMID: 29710398 DOI: 10.1002/mnfr.201700908] [Cited by in Crossref: 17] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
699 Silva-Islas CA, Maldonado PD. Canonical and non-canonical mechanisms of Nrf2 activation. Pharmacol Res 2018;134:92-9. [PMID: 29913224 DOI: 10.1016/j.phrs.2018.06.013] [Cited by in Crossref: 103] [Cited by in F6Publishing: 152] [Article Influence: 25.8] [Reference Citation Analysis]
700 Piras S, Furfaro AL, Caggiano R, Brondolo L, Garibaldi S, Ivaldo C, Marinari UM, Pronzato MA, Faraonio R, Nitti M. microRNA-494 Favors HO-1 Expression in Neuroblastoma Cells Exposed to Oxidative Stress in a Bach1-Independent Way. Front Oncol 2018;8:199. [PMID: 29951371 DOI: 10.3389/fonc.2018.00199] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 3.3] [Reference Citation Analysis]
701 Pu D, Zhao Y, Chen J, sun Y, Lv A, Zhu S, Luo C, Zhao K, Xiao Q. Protective Effects of Sulforaphane on Cognitive Impairments and AD-like Lesions in Diabetic Mice are Associated with the Upregulation of Nrf2 Transcription Activity. Neuroscience 2018;381:35-45. [DOI: 10.1016/j.neuroscience.2018.04.017] [Cited by in Crossref: 23] [Cited by in F6Publishing: 27] [Article Influence: 5.8] [Reference Citation Analysis]
702 Bricambert J, Alves-Guerra MC, Esteves P, Prip-Buus C, Bertrand-Michel J, Guillou H, Chang CJ, Vander Wal MN, Canonne-Hergaux F, Mathurin P, Raverdy V, Pattou F, Girard J, Postic C, Dentin R. The histone demethylase Phf2 acts as a molecular checkpoint to prevent NAFLD progression during obesity. Nat Commun 2018;9:2092. [PMID: 29844386 DOI: 10.1038/s41467-018-04361-y] [Cited by in Crossref: 25] [Cited by in F6Publishing: 34] [Article Influence: 6.3] [Reference Citation Analysis]
703 Tong J, Mo QG, Ma BX, Ge LL, Zhou G, Wang YW. The protective effects of Cichorium glandulosum seed and cynarin against cyclophosphamide and its metabolite acrolein-induced hepatotoxicity in vivo and in vitro. Food Funct 2017;8:209-19. [PMID: 27966724 DOI: 10.1039/c6fo01531j] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 3.8] [Reference Citation Analysis]
704 Park SH, Kim JH, Ko E, Kim JY, Park MJ, Kim MJ, Seo H, Li S, Lee JY. Resistance to gefitinib and cross-resistance to irreversible EGFR-TKIs mediated by disruption of the Keap1-Nrf2 pathway in human lung cancer cells. FASEB J 2018;:fj201800011R. [PMID: 29812969 DOI: 10.1096/fj.201800011R] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]
705 Cameron BD, Sekhar KR, Ofori M, Freeman ML. The Role of Nrf2 in the Response to Normal Tissue Radiation Injury. Radiat Res 2018;190:99-106. [PMID: 29799319 DOI: 10.1667/RR15059.1] [Cited by in Crossref: 22] [Cited by in F6Publishing: 29] [Article Influence: 5.5] [Reference Citation Analysis]
706 Dayalan Naidu S, Muramatsu A, Saito R, Asami S, Honda T, Hosoya T, Itoh K, Yamamoto M, Suzuki T, Dinkova-Kostova AT. C151 in KEAP1 is the main cysteine sensor for the cyanoenone class of NRF2 activators, irrespective of molecular size or shape. Sci Rep 2018;8:8037. [PMID: 29795117 DOI: 10.1038/s41598-018-26269-9] [Cited by in F6Publishing: 31] [Reference Citation Analysis]
707 Wu P, Ding H, Yen J, Chen S, Lee K, Wu M. Anti-inflammatory Activity of 8-Hydroxydaidzein in LPS-Stimulated BV2 Microglial Cells via Activation of Nrf2-Antioxidant and Attenuation of Akt/NF-κB-Inflammatory Signaling Pathways, as Well As Inhibition of COX-2 Activity. J Agric Food Chem 2018;66:5790-801. [DOI: 10.1021/acs.jafc.8b00437] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
708 Burroughs AF, Eluhu S, Whalen D, Goodwin JS, Sakwe AM, Arinze IJ. PML-Nuclear Bodies Regulate the Stability of the Fusion Protein Dendra2-Nrf2 in the Nucleus. Cell Physiol Biochem 2018;47:800-16. [PMID: 29807365 DOI: 10.1159/000490033] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
709 Xu LL, Liu T, Wang L, Li L, Wu YF, Li CC, Di B, You QD, Jiang ZY. 3-(1H-Benzo[d]imidazol-6-yl)-5-(4-fluorophenyl)-1,2,4-oxadiazole (DDO7232), a Novel Potent Nrf2/ARE Inducer, Ameliorates DSS-Induced Murine Colitis and Protects NCM460 Cells against Oxidative Stress via ERK1/2 Phosphorylation. Oxid Med Cell Longev 2018;2018:3271617. [PMID: 29887940 DOI: 10.1155/2018/3271617] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
710 Matthews JH, Liang X, Paul VJ, Luesch H. A Complementary Chemical and Genomic Screening Approach for Druggable Targets in the Nrf2 Pathway and Small Molecule Inhibitors to Overcome Cancer Cell Drug Resistance. ACS Chem Biol 2018;13:1189-99. [PMID: 29565554 DOI: 10.1021/acschembio.7b01025] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
711 Fan Y, Huang Z, Long C, Ning J, Zhang H, Kuang X, Zhang Q, Shen H. ID2 protects retinal pigment epithelium cells from oxidative damage through p-ERK1/2/ID2/NRF2.