BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li W, Yue H. Thymidine phosphorylase: A potential new target for treating cardiovascular disease. Trends Cardiovasc Med 2018;28:157-71. [PMID: 29108898 DOI: 10.1016/j.tcm.2017.10.003] [Cited by in Crossref: 17] [Cited by in F6Publishing: 22] [Article Influence: 3.4] [Reference Citation Analysis]
Number Citing Articles
1 Paladhi A, Daripa S, Mondal I, Hira SK. Targeting thymidine phosphorylase alleviates resistance to dendritic cell immunotherapy in colorectal cancer and promotes antitumor immunity. Front Immunol 2022;13:988071. [DOI: 10.3389/fimmu.2022.988071] [Reference Citation Analysis]
2 van Dieken A, Staecker H, Schmitt H, Harre J, Pich A, Roßberg W, Lenarz T, Durisin M, Warnecke A. Bioinformatic Analysis of the Perilymph Proteome to Generate a Human Protein Atlas. Front Cell Dev Biol 2022;10:847157. [PMID: 35573665 DOI: 10.3389/fcell.2022.847157] [Reference Citation Analysis]
3 Sun Z, Tao W, Guo X, Jing C, Zhang M, Wang Z, Kong F, Suo N, Jiang S, Wang H. Construction of a Lactate-Related Prognostic Signature for Predicting Prognosis, Tumor Microenvironment, and Immune Response in Kidney Renal Clear Cell Carcinoma. Front Immunol 2022;13:818984. [PMID: 35250999 DOI: 10.3389/fimmu.2022.818984] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
4 Gu Y, Guo Y, Gao N, Fang Y, Xu C, Hu G, Guo M, Ma Y, Zhang Y, Zhou J, Luo Y, Zhang H, Wen Q, Qiao H. The proteomic characterization of the peritumor microenvironment in human hepatocellular carcinoma. Oncogene 2022. [PMID: 35314790 DOI: 10.1038/s41388-022-02264-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Poortahmasebi V, Nejati A, Abazari MF, Nasiri Toosi M, Ghaziasadi A, Mohammadzadeh N, Tavakoli A, Khamseh A, Momenifar N, Gholizadeh O, Norouzi M, Jazayeri SM, Solimando AG. Identifying Potential New Gene Expression-Based Biomarkers in the Peripheral Blood Mononuclear Cells of Hepatitis B-Related Hepatocellular Carcinoma. Canadian Journal of Gastroenterology and Hepatology 2022;2022:1-13. [DOI: 10.1155/2022/9541600] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Chauveau B, Raymond A, Di Tommaso S, Visentin J, Vermorel A, Dugot-senant N, Dourthe C, Dupuy J, Déchanet-merville J, Duong Van Huyen J, Rabant M, Couzi L, Saltel F, Merville P. The Proteome of Antibody-Mediated Rejection: From Glomerulitis to Transplant Glomerulopathy. Biomedicines 2022;10:569. [DOI: 10.3390/biomedicines10030569] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Gawryś K, Turek-Jakubowska A, Gawryś J, Jakubowski M, Dębski J, Szahidewicz-Krupska E, Trocha M, Derkacz A, Doroszko A. Platelet-Derived Drug Targets and Biomarkers of Ischemic Stroke-The First Dynamic Human LC-MS Proteomic Study. J Clin Med 2022;11:1198. [PMID: 35268287 DOI: 10.3390/jcm11051198] [Reference Citation Analysis]
8 Turek-Jakubowska A, Dębski J, Jakubowski M, Szahidewicz-Krupska E, Gawryś J, Gawryś K, Janus A, Trocha M, Doroszko A. New Candidates for Biomarkers and Drug Targets of Ischemic Stroke-A First Dynamic LC-MS Human Serum Proteomic Study. J Clin Med 2022;11:339. [PMID: 35054033 DOI: 10.3390/jcm11020339] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Azwar S, Seow HF, Abdullah M, Faisal Jabar M, Mohtarrudin N. Recent Updates on Mechanisms of Resistance to 5-Fluorouracil and Reversal Strategies in Colon Cancer Treatment. Biology (Basel) 2021;10:854. [PMID: 34571731 DOI: 10.3390/biology10090854] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
10 Benfatto S, Serçin Ö, Dejure FR, Abdollahi A, Zenke FT, Mardin BR. Uncovering cancer vulnerabilities by machine learning prediction of synthetic lethality. Mol Cancer 2021;20:111. [PMID: 34454516 DOI: 10.1186/s12943-021-01405-8] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Joshi H, Vastrad B, Joshi N, Vastrad C, Tengli A, Kotturshetti I. Identification of Key Pathways and Genes in Obesity Using Bioinformatics Analysis and Molecular Docking Studies. Front Endocrinol (Lausanne) 2021;12:628907. [PMID: 34248836 DOI: 10.3389/fendo.2021.628907] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Matsumae G, Shimizu T, Tian Y, Takahashi D, Ebata T, Alhasan H, Yokota S, Kadoya K, Terkawi MA, Iwasaki N. Targeting thymidine phosphorylase as a potential therapy for bone loss associated with periprosthetic osteolysis. Bioeng Transl Med 2021;6:e10232. [PMID: 34589604 DOI: 10.1002/btm2.10232] [Cited by in Crossref: 1] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
13 Kaspar F, Wolff DS, Neubauer P, Kurreck A, Arcus VL. pH-Independent Heat Capacity Changes during Phosphorolysis Catalyzed by the Pyrimidine Nucleoside Phosphorylase from Geobacillus thermoglucosidasius. Biochemistry 2021;60:1573-7. [PMID: 33955225 DOI: 10.1021/acs.biochem.1c00156] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
14 Li W, Yue H. Thymidine Phosphorylase Is Increased in COVID-19 Patients in an Acuity-Dependent Manner. Front Med (Lausanne) 2021;8:653773. [PMID: 33829029 DOI: 10.3389/fmed.2021.653773] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Belcher A, Zulfiker AHM, Li OQ, Yue H, Gupta AS, Li W. Targeting Thymidine Phosphorylase With Tipiracil Hydrochloride Attenuates Thrombosis Without Increasing Risk of Bleeding in Mice. Arterioscler Thromb Vasc Biol 2021;41:668-82. [PMID: 33297751 DOI: 10.1161/ATVBAHA.120.315109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
16 Song H, Liu D, Dong S, Zeng L, Wu Z, Zhao P, Zhang L, Chen ZS, Zou C. Epitranscriptomics and epiproteomics in cancer drug resistance: therapeutic implications. Signal Transduct Target Ther 2020;5:193. [PMID: 32900991 DOI: 10.1038/s41392-020-00300-w] [Cited by in Crossref: 10] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
17 Pagano E, Frank B, Jaggers J, Twite M, Urban TT, Klawitter J, Davidson J. Alterations in Metabolites Associated with Hypoxemia in Neonates and Infants with Congenital Heart Disease. Congenit Heart Dis 2020;15:251-65. [PMID: 34413893 DOI: 10.32604/chd.2020.012219] [Reference Citation Analysis]
18 Li Y, Lin P, Wang S, Li S, Wang R, Yang L, Wang H. Quantitative analysis of differentially expressed proteins in psoriasis vulgaris using tandem mass tags and parallel reaction monitoring. Clin Proteomics 2020;17:30. [PMID: 32817748 DOI: 10.1186/s12014-020-09293-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
19 Liu M, Pan Q, Xiao R, Yu Y, Lu W, Wang L. A cluster of metabolism-related genes predict prognosis and progression of clear cell renal cell carcinoma. Sci Rep 2020;10:12949. [PMID: 32737333 DOI: 10.1038/s41598-020-67760-6] [Cited by in Crossref: 3] [Cited by in F6Publishing: 10] [Article Influence: 1.5] [Reference Citation Analysis]
20 Watanabe S, Nishijima KI, Okamoto S, Magota K, Hirata K, Toyonaga T, Shiga T, Kuge Y, Tamaki N. Biodistribution and internal radiation dosimetry of a novel probe for thymidine phosphorylase imaging, [123I]IIMU, in healthy volunteers. Ann Nucl Med 2020;34:595-9. [PMID: 32361818 DOI: 10.1007/s12149-020-01469-4] [Reference Citation Analysis]
21 Tozer T, Heale K, Manto Chagas C, de Barros ALB, Alisaraie L. Interdomain twists of human thymidine phosphorylase and its active-inactive conformations: Binding of 5-FU and its analogues to human thymidine phosphorylase versus dihydropyrimidine dehydrogenase. Chem Biol Drug Des 2019;94:1956-72. [PMID: 31356728 DOI: 10.1111/cbdd.13596] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
22 Pacitti D, Levene M, Garone C, Nirmalananthan N, Bax BE. Mitochondrial Neurogastrointestinal Encephalomyopathy: Into the Fourth Decade, What We Have Learned So Far. Front Genet 2018;9:669. [PMID: 30627136 DOI: 10.3389/fgene.2018.00669] [Cited by in Crossref: 30] [Cited by in F6Publishing: 26] [Article Influence: 7.5] [Reference Citation Analysis]
23 Matsumae G, Shimizu T, Tian Y, Takahashi D, Ebata T, Alhasan H, Yokota S, Kadoya K, Terkawi MA, Iwasaki N. Identification of Thymidine Phosphorylase as a Potential Therapeutic Target for Bone Loss Associated Periprosthetic Osteolysis. SSRN Journal. [DOI: 10.2139/ssrn.3804752] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]