BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Lin KC, Muthukumar S, Prasad S. Flex-GO (Flexible graphene oxide) sensor for electrochemical monitoring lactate in low-volume passive perspired human sweat. Talanta 2020;214:120810. [PMID: 32278429 DOI: 10.1016/j.talanta.2020.120810] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Jiang J, Chen X, Niu Y, He X, Hu Y, Wang C. Advances in flexible sensors with MXene materials. New Carbon Materials 2022;37:303-20. [DOI: 10.1016/s1872-5805(22)60589-4] [Reference Citation Analysis]
2 Md Shakhih MF, Rosslan AS, Noor AM, Ramanathan S, Lazim AM, Wahab AA. Review-Enzymatic and Non-Enzymatic Electrochemical Sensor for Lactate Detection in Human Biofluids. J Electrochem Soc 2021;168:067502. [DOI: 10.1149/1945-7111/ac0360] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Bhide A, Ganguly A, Parupudi T, Ramasamy M, Muthukumar S, Prasad S. Next-Generation Continuous Metabolite Sensing toward Emerging Sensor Needs. ACS Omega 2021;6:6031-40. [PMID: 33718694 DOI: 10.1021/acsomega.0c06209] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
4 Poudyal DC, Dhamu VN, Paul A, Samson M, Muthukumar S, Prasad S. A novel single step method to rapidly screen for metal contaminants in beverages, a case study with aluminum. Environmental Technology & Innovation 2022;28:102691. [DOI: 10.1016/j.eti.2022.102691] [Reference Citation Analysis]
5 Maduraiveeran G. Bionanomaterial-based electrochemical biosensing platforms for biomedical applications. Anal Methods 2020;12:1688-701. [DOI: 10.1039/d0ay00171f] [Cited by in Crossref: 10] [Article Influence: 5.0] [Reference Citation Analysis]
6 Bhattacharjee T, Rahman S, Deka D, Purkait MK, Chowdhury D, Majumdar G. Synthesis and characterization of exfoliated beta-cyclodextrin functionalized graphene oxide for adsorptive removal of atenolol. Materials Chemistry and Physics 2022;288:126413. [DOI: 10.1016/j.matchemphys.2022.126413] [Reference Citation Analysis]
7 Hong X, Wu H, Wang C, Zhang X, Wei C, Xu Z, Chen D, Huang X. Hybrid Janus Membrane with Dual-Asymmetry Integration of Wettability and Conductivity for Ultra-Low-Volume Sweat Sensing. ACS Appl Mater Interfaces 2022;14:9644-54. [PMID: 35133787 DOI: 10.1021/acsami.1c16820] [Reference Citation Analysis]
8 Qiao Y, Qiao L, Chen Z, Liu B, Gao L, Zhang L. Wearable Sensor for Continuous Sweat Biomarker Monitoring. Chemosensors 2022;10:273. [DOI: 10.3390/chemosensors10070273] [Reference Citation Analysis]
9 Yu W, Gong K, Li Y, Ding B, Li L, Xu Y, Wang R, Li L, Zhang G, Lin S. Flexible 2D Materials beyond Graphene: Synthesis, Properties, and Applications. Small 2022;:e2105383. [PMID: 35048521 DOI: 10.1002/smll.202105383] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Mathew M, Radhakrishnan S, Vaidyanathan A, Chakraborty B, Rout CS. Flexible and wearable electrochemical biosensors based on two-dimensional materials: Recent developments. Anal Bioanal Chem 2021;413:727-62. [PMID: 33094369 DOI: 10.1007/s00216-020-03002-y] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
11 Santiago E, Poudyal SS, Shin SY, Yoon HJ. Graphene Oxide Functionalized Biosensor for Detection of Stress-Related Biomarkers. Sensors (Basel) 2022;22:558. [PMID: 35062519 DOI: 10.3390/s22020558] [Reference Citation Analysis]
12 Khan MRR, Khalilian A, Seo J, Oh S, Thakre A, An TK, Lee HS. Highly Reliable Passive RFID-Based Inductor–Capacitor Sensory System Strengthened by Solvatochromism for Fast and Wide-Range Lactate Detection. IEEE Sensors J 2022;22:12228-36. [DOI: 10.1109/jsen.2022.3174210] [Reference Citation Analysis]
13 Lee C, Jeong S, Kwon Y, Lee J, Cho S, Shin B. Fabrication of laser-induced graphene-based multifunctional sensing platform for sweat ion and human motion monitoring. Sensors and Actuators A: Physical 2022;334:113320. [DOI: 10.1016/j.sna.2021.113320] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
14 Bhide A, Lin KC, Muthukumar S, Prasad S. On-demand lactate monitoring towards assessing physiological responses in sedentary populations. Analyst 2021;146:3482-92. [PMID: 33955985 DOI: 10.1039/d1an00455g] [Reference Citation Analysis]
15 Jeerapan I, Sonsa-ard T, Nacapricha D. Applying Nanomaterials to Modern Biomedical Electrochemical Detection of Metabolites, Electrolytes, and Pathogens. Chemosensors 2020;8:71. [DOI: 10.3390/chemosensors8030071] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
16 Xuan X, Pérez-Ràfols C, Chen C, Cuartero M, Crespo GA. Lactate Biosensing for Reliable On-Body Sweat Analysis. ACS Sens 2021;6:2763-71. [PMID: 34228919 DOI: 10.1021/acssensors.1c01009] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 15.0] [Reference Citation Analysis]
17 Topkaya SN, Turunc E, Cetin AE. Multi‐walled Carbon Nanotubes and Gold Nanorod Decorated Biosensor for Detection of microRNA‐126. Electroanalysis 2021;33:2078-86. [DOI: 10.1002/elan.202100198] [Reference Citation Analysis]
18 Madden J, Vaughan E, Thompson M, O' Riordan A, Galvin P, Iacopino D, Rodrigues Teixeira S. Electrochemical sensor for enzymatic lactate detection based on laser-scribed graphitic carbon modified with platinum, chitosan and lactate oxidase. Talanta 2022;246:123492. [PMID: 35487014 DOI: 10.1016/j.talanta.2022.123492] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Silva AD, Paschoalino WJ, Damasceno JPV, Kubota LT. Structure, Properties, and Electrochemical Sensing Applications of Graphene‐Based Materials. ChemElectroChem 2020;7:4508-25. [DOI: 10.1002/celc.202001168] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
20 Yuan F, Xia Y, Lu Q, Xu Q, Shu Y, Hu X. Recent advances in inorganic functional nanomaterials based flexible electrochemical sensors. Talanta 2022;244:123419. [DOI: 10.1016/j.talanta.2022.123419] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Sainz R, Pozo MD, Vázquez L, Vilas-varela M, Castro-esteban J, Blanco E, Petit-domínguez MD, Quintana C, Casero E. Lactate biosensing based on covalent immobilization of lactate oxidase onto chevron-like graphene nanoribbons via diazotization-coupling reaction. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339851] [Reference Citation Analysis]
22 Pali M, Jagannath B, Lin KC, Sankhala D, Upasham S, Muthukumar S, Prasad S. Tracking metabolic responses based on macronutrient consumption: A comprehensive study to continuously monitor and quantify dual markers (cortisol and glucose) in human sweat using WATCH sensor. Bioeng Transl Med 2021;6:e10241. [PMID: 34589609 DOI: 10.1002/btm2.10241] [Reference Citation Analysis]
23 Pillai S, Upadhyay A, Sayson D, Nguyen BH, Tran SD. Advances in Medical Wearable Biosensors: Design, Fabrication and Materials Strategies in Healthcare Monitoring. Molecules 2021;27:165. [PMID: 35011400 DOI: 10.3390/molecules27010165] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
24 Nemčeková K, Labuda J. Advanced materials-integrated electrochemical sensors as promising medical diagnostics tools: A review. Mater Sci Eng C Mater Biol Appl 2021;120:111751. [PMID: 33545892 DOI: 10.1016/j.msec.2020.111751] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
25 Crapnell RD, Tridente A, Banks CE, Dempsey-Hibbert NC. Evaluating the Possibility of Translating Technological Advances in Non-Invasive Continuous Lactate Monitoring into Critical Care. Sensors (Basel) 2021;21:879. [PMID: 33525567 DOI: 10.3390/s21030879] [Reference Citation Analysis]
26 Chakraborty S, Saha R, Karmakar A, Chattopadhyay S. Fabrication and Characterization of Zinc Oxide Nanowire Based Two‐electrode Capacitive Biosensors on Flexible Substrates for Estimating Glucose Content in a Sample. Electroanalysis 2021;33:1185-93. [DOI: 10.1002/elan.202060343] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
27 Maduraiveeran G, Chen A. Design of an enzyme-mimicking NiO@Au nanocomposite for the sensitive electrochemical detection of lactic acid in human serum and urine. Electrochimica Acta 2021;368:137612. [DOI: 10.1016/j.electacta.2020.137612] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]