BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Vokhmyanina DV, Andreeva KD, Komkova MA, Karyakina EE, Karyakin AA. ‘Artificial peroxidase’ nanozyme – enzyme based lactate biosensor. Talanta 2020;208:120393. [DOI: 10.1016/j.talanta.2019.120393] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Demkiv O, Stasyuk N, Serkiz R, Gayda G, Nisnevitch M, Gonchar M. Peroxidase-Like Metal-Based Nanozymes: Synthesis, Catalytic Properties, and Analytical Application. Applied Sciences 2021;11:777. [DOI: 10.3390/app11020777] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
2 Roquero DM, Bollella P, Melman A, Katz E. Nanozyme-Triggered DNA Release from Alginate Films. ACS Appl Bio Mater 2020;3:3741-50. [DOI: 10.1021/acsabm.0c00348] [Cited by in Crossref: 6] [Article Influence: 3.0] [Reference Citation Analysis]
3 Wang L, Hao L, Qi W, Huo X, Xue L, Liu Y, Zhang Q, Lin J. A sensitive Salmonella biosensor using platinum nanoparticle loaded manganese dioxide nanoflowers and thin-film pressure detector. Sensors and Actuators B: Chemical 2020;321:128616. [DOI: 10.1016/j.snb.2020.128616] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
4 Alvarado-Ramírez L, Rostro-Alanis M, Rodríguez-Rodríguez J, Sosa-Hernández JE, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Enzyme (Single and Multiple) and Nanozyme Biosensors: Recent Developments and Their Novel Applications in the Water-Food-Health Nexus. Biosensors (Basel) 2021;11:410. [PMID: 34821626 DOI: 10.3390/bios11110410] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
5 Padmakumari Kurup C, Abdullah Lim S, Ahmed MU. Nanomaterials as signal amplification elements in aptamer-based electrochemiluminescent biosensors. Bioelectrochemistry 2022;147:108170. [DOI: 10.1016/j.bioelechem.2022.108170] [Reference Citation Analysis]
6 Alba-Patiño A, Vaquer A, Barón E, Russell SM, Borges M, de la Rica R. Micro- and nanosensors for detecting blood pathogens and biomarkers at different points of sepsis care. Mikrochim Acta 2022;189:74. [PMID: 35080669 DOI: 10.1007/s00604-022-05171-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
7 Yan L, Miao K, Ma P, Ma X, Bi R, Chen F. A feasible electrochemical biosensor for determination of glucose based on Prussian blue - Enzyme aggregates cascade catalytic system. Bioelectrochemistry 2021;141:107838. [PMID: 34038858 DOI: 10.1016/j.bioelechem.2021.107838] [Reference Citation Analysis]
8 Zhao Q, Lu D, Zhang G, Zhang D, Shi X. Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials. Talanta 2021;223:121722. [DOI: 10.1016/j.talanta.2020.121722] [Cited by in Crossref: 12] [Cited by in F6Publishing: 4] [Article Influence: 12.0] [Reference Citation Analysis]
9 Mahmudunnabi RG, Farhana FZ, Kashaninejad N, Firoz SH, Shim YB, Shiddiky MJA. Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst 2020;145:4398-420. [PMID: 32436931 DOI: 10.1039/d0an00558d] [Cited by in Crossref: 28] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
10 Pan J, He Q, Lao Z, Zou Y, Su J, Li Q, Chen Z, Cui X, Cai Y, Zhao S. A bifunctional immunosensor based on osmium nano-hydrangeas as a catalytic chromogenic and tinctorial signal output for folic acid detection. Analyst 2021;147:55-65. [PMID: 34821249 DOI: 10.1039/d1an01432c] [Reference Citation Analysis]
11 Liu B, Zhuang J, Wei G. Recent advances in the design of colorimetric sensors for environmental monitoring. Environ Sci : Nano 2020;7:2195-213. [DOI: 10.1039/d0en00449a] [Cited by in Crossref: 41] [Article Influence: 20.5] [Reference Citation Analysis]
12 Stasyuk N, Smutok O, Demkiv O, Prokopiv T, Gayda G, Nisnevitch M, Gonchar M. Synthesis, Catalytic Properties and Application in Biosensorics of Nanozymes and Electronanocatalysts: A Review. Sensors (Basel) 2020;20:E4509. [PMID: 32806607 DOI: 10.3390/s20164509] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 5.5] [Reference Citation Analysis]
13 Qian S, Cui Y, Cai Z, Li L. Applications of smartphone-based colorimetric biosensors. Biosensors and Bioelectronics: X 2022. [DOI: 10.1016/j.biosx.2022.100173] [Reference Citation Analysis]
14 Karpova EV, Shcherbacheva EV, Komkova MA, Eliseev AA, Karyakin AA. Core-Shell Nanozymes "Artificial Peroxidase": Stability with Superior Catalytic Properties. J Phys Chem Lett 2021;12:5547-51. [PMID: 34101473 DOI: 10.1021/acs.jpclett.1c01200] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Komkova MA, Andreeva KD, Zarochintsev AA, Karyakin AA. Nanozymes “Artificial Peroxidase”: Enzyme Oxidase Mixtures for Single‐Step Fabrication of Advanced Electrochemical Biosensors. ChemElectroChem 2021;8:1117-22. [DOI: 10.1002/celc.202100275] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
16 Wang Q, Liu S, Tang Z. Recent progress in the design of analytical methods based on nanozymes. J Mater Chem B 2021;9:8174-84. [PMID: 34498637 DOI: 10.1039/d1tb01521d] [Reference Citation Analysis]
17 Komkova MA, Zarochintsev AA, Karyakin AA. Nanozymes ‘artificial peroxidase’ in reduction and detection of organic peroxides. Journal of Electroanalytical Chemistry 2022;904:115902. [DOI: 10.1016/j.jelechem.2021.115902] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Song H, Ma C, Wang L, Zhu Z. Platinum nanoparticle-deposited multi-walled carbon nanotubes as a NADH oxidase mimic: characterization and applications. Nanoscale 2020;12:19284-92. [DOI: 10.1039/d0nr04060f] [Cited by in Crossref: 5] [Article Influence: 2.5] [Reference Citation Analysis]
19 Ashrafi AM, Bytesnikova Z, Barek J, Richtera L, Adam V. A critical comparison of natural enzymes and nanozymes in biosensing and bioassays. Biosens Bioelectron 2021;192:113494. [PMID: 34303137 DOI: 10.1016/j.bios.2021.113494] [Reference Citation Analysis]
20 Gayda GZ, Demkiv OM, Gurianov Y, Serkiz RY, Klepach HM, Gonchar MV, Nisnevitch M. "Green" Prussian Blue Analogues as Peroxidase Mimetics for Amperometric Sensing and Biosensing. Biosensors (Basel) 2021;11:193. [PMID: 34200755 DOI: 10.3390/bios11060193] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Daboss EV, Tikhonov DV, Shcherbacheva EV, Karyakin AA. Ultrastable Lactate Biosensor Linearly Responding in Whole Sweat for Noninvasive Monitoring of Hypoxia. Anal Chem 2022. [PMID: 35687799 DOI: 10.1021/acs.analchem.2c02208] [Reference Citation Analysis]
22 Vokhmyanina DV, Shcherbacheva EV, Daboss EV, Karyakina EE, Karyakin AA. Core-Shell Iron-Nickel Hexacyanoferrate Nanoparticle-Based Sensors for Hydrogen Peroxide Scavenging Activity. Chemosensors 2021;9:344. [DOI: 10.3390/chemosensors9120344] [Reference Citation Analysis]
23 Johnston L, Wang G, Hu K, Qian C, Liu G. Advances in Biosensors for Continuous Glucose Monitoring Towards Wearables. Front Bioeng Biotechnol 2021;9:733810. [PMID: 34490230 DOI: 10.3389/fbioe.2021.733810] [Reference Citation Analysis]