BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li X, Wu XQ, Xu T, Li XF, Yang Y, Li WX, Huang C, Meng XM, Li J. Role of histone deacetylases(HDACs) in progression and reversal of liver fibrosis. Toxicol Appl Pharmacol 2016;306:58-68. [PMID: 27396813 DOI: 10.1016/j.taap.2016.07.003] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
Number Citing Articles
1 Gao L, Zhou Y, Cao L, Cui X, Zheng Y, Yin H, Ai S. Photoelectrochemical Biosensor for Histone Deacetylase Sirt1 Detection Based on Polyaspartic Acid-Engaged and Triggered Redox Cycling Amplification and Enhanced Photoactivity of BiVO4 by Gold Nanoparticles and SnS2. Anal Chem 2022. [DOI: 10.1021/acs.analchem.2c04380] [Reference Citation Analysis]
2 Wu Z, Wang J, Feng J, Ying L. MicroRNA-122-5p prevents proliferation and promotes apoptosis of hepatic stellate cells by suppressing the cellular-Abelsongene/histone deacetylases 2 pathway. Hum Exp Toxicol 2022;41:9603271221084672. [PMID: 35303413 DOI: 10.1177/09603271221084672] [Reference Citation Analysis]
3 Paskeh MDA, Mirzaei S, Orouei S, Zabolian A, Saleki H, Azami N, Hushmandi K, Baradaran B, Hashmi M, Aref AR, Ertas YN, Zarrabi A, Ashrafizadeh M, Samarghandian S. Revealing the role of miRNA-489 as a new onco-suppressor factor in different cancers based on pre-clinical and clinical evidence. Int J Biol Macromol 2021;191:727-37. [PMID: 34562537 DOI: 10.1016/j.ijbiomac.2021.09.089] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 15.0] [Reference Citation Analysis]
4 Tan Z, Sun H, Xue T, Gan C, Liu H, Xie Y, Yao Y, Ye T. Liver Fibrosis: Therapeutic Targets and Advances in Drug Therapy. Front Cell Dev Biol 2021;9:730176. [PMID: 34621747 DOI: 10.3389/fcell.2021.730176] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 18.0] [Reference Citation Analysis]
5 Jiménez-Uribe AP, Gómez-Sierra T, Aparicio-Trejo OE, Orozco-Ibarra M, Pedraza-Chaverri J. Backstage players of fibrosis: NOX4, mTOR, HDAC, and S1P; companions of TGF-β. Cell Signal 2021;87:110123. [PMID: 34438016 DOI: 10.1016/j.cellsig.2021.110123] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 13.0] [Reference Citation Analysis]
6 You H, Wang L, Bu F, Meng H, Pan X, Li J, Zhang Y, Wang A, Yin N, Huang C, Li J. The miR-455-3p/HDAC2 axis plays a pivotal role in the progression and reversal of liver fibrosis and is regulated by epigenetics. FASEB J 2021;35:e21700. [PMID: 34105828 DOI: 10.1096/fj.202002319RRR] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Wang K, Li Y, Qiang T, Chen J, Wang X. Role of epigenetic regulation in myocardial ischemia/reperfusion injury. Pharmacol Res 2021;170:105743. [PMID: 34182132 DOI: 10.1016/j.phrs.2021.105743] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 12.0] [Reference Citation Analysis]
8 Hu Y, He J, He L, Xu B, Wang Q. Expression and function of Smad7 in autoimmune and inflammatory diseases. J Mol Med (Berl) 2021;99:1209-20. [PMID: 34059951 DOI: 10.1007/s00109-021-02083-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Liu YR, Wang JQ, Huang ZG, Chen RN, Cao X, Zhu DC, Yu HX, Wang XR, Zhou HY, Xia Q, Li J. Histone deacetylase‑2: A potential regulator and therapeutic target in liver disease (Review). Int J Mol Med 2021;48:131. [PMID: 34013366 DOI: 10.3892/ijmm.2021.4964] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
10 Claveria-Cabello A, Colyn L, Arechederra M, Urman JM, Berasain C, Avila MA, Fernandez-Barrena MG. Epigenetics in Liver Fibrosis: Could HDACs be a Therapeutic Target? Cells 2020;9:E2321. [PMID: 33086678 DOI: 10.3390/cells9102321] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
11 Yang X, Yu T, Zhang S. MicroRNA-489 suppresses isoproterenol-induced cardiac fibrosis by downregulating histone deacetylase 2. Exp Ther Med 2020;19:2229-35. [PMID: 32104288 DOI: 10.3892/etm.2020.8470] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
12 Land WG. DAMP-Promoted Efferent Innate Immune Responses in Human Diseases: Fibrosis. Damage-Associated Molecular Patterns in Human Diseases 2020. [DOI: 10.1007/978-3-030-53868-2_6] [Reference Citation Analysis]
13 Manea SA, Vlad ML, Fenyo IM, Lazar AG, Raicu M, Muresian H, Simionescu M, Manea A. Pharmacological inhibition of histone deacetylase reduces NADPH oxidase expression, oxidative stress and the progression of atherosclerotic lesions in hypercholesterolemic apolipoprotein E-deficient mice; potential implications for human atherosclerosis. Redox Biol 2020;28:101338. [PMID: 31634818 DOI: 10.1016/j.redox.2019.101338] [Cited by in Crossref: 34] [Cited by in F6Publishing: 29] [Article Influence: 11.3] [Reference Citation Analysis]
14 Zhao Z, Lin CY, Cheng K. siRNA- and miRNA-based therapeutics for liver fibrosis. Transl Res 2019;214:17-29. [PMID: 31476281 DOI: 10.1016/j.trsl.2019.07.007] [Cited by in Crossref: 31] [Cited by in F6Publishing: 29] [Article Influence: 10.3] [Reference Citation Analysis]
15 Shan L, Liu Z, Ci L, Shuai C, Lv X, Li J. Research progress on the anti-hepatic fibrosis action and mechanism of natural products. Int Immunopharmacol 2019;75:105765. [PMID: 31336335 DOI: 10.1016/j.intimp.2019.105765] [Cited by in Crossref: 27] [Cited by in F6Publishing: 32] [Article Influence: 9.0] [Reference Citation Analysis]
16 Shrishrimal S, Kosmacek EA, Oberley-Deegan RE. Reactive Oxygen Species Drive Epigenetic Changes in Radiation-Induced Fibrosis. Oxid Med Cell Longev 2019;2019:4278658. [PMID: 30881591 DOI: 10.1155/2019/4278658] [Cited by in Crossref: 38] [Cited by in F6Publishing: 43] [Article Influence: 12.7] [Reference Citation Analysis]
17 Matsui M, Terasawa K, Kajikuri J, Kito H, Endo K, Jaikhan P, Suzuki T, Ohya S. Histone Deacetylases Enhance Ca2+-Activated K⁺ Channel KCa3.1 Expression in Murine Inflammatory CD4⁺ T Cells. Int J Mol Sci 2018;19:E2942. [PMID: 30262728 DOI: 10.3390/ijms19102942] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]