BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Maruthi N, Faisal M, Raghavendra N. Conducting polymer based composites as efficient EMI shielding materials: A comprehensive review and future prospects. Synthetic Metals 2021;272:116664. [DOI: 10.1016/j.synthmet.2020.116664] [Cited by in Crossref: 23] [Cited by in F6Publishing: 5] [Article Influence: 23.0] [Reference Citation Analysis]
Number Citing Articles
1 Park J, Kwac LK, Kim HG, Park K, Koo KW, Ryu D, Shin HK. Electromagnetic-Interference-Shielding Effectiveness of Lyocell-Based Carbon Fabrics Carbonized at Various Temperatures. Molecules 2022;27:5392. [DOI: 10.3390/molecules27175392] [Reference Citation Analysis]
2 Pontes K, Soares BG. Segregated structure of poly (vinylidene fluoride-co-hexafluoropropylene) composites loaded with polyaniline@carbon nanotube hybrids with enhanced microwave absorbing properties. Synthetic Metals 2022;288:117096. [DOI: 10.1016/j.synthmet.2022.117096] [Reference Citation Analysis]
3 Sezer Hicyilmaz A, Celik Bedeloglu A. Electromagnetic interference shielding thermoplastic composites reinforced with carbon based hybrid materials: a review. Composite Interfaces. [DOI: 10.1080/09276440.2022.2098617] [Reference Citation Analysis]
4 Ozkan SZ, Kostev AI, Chernavskii PA, Karpacheva GP. Novel Hybrid Nanomaterials Based on Poly-N-Phenylanthranilic Acid and Magnetic Nanoparticles with Enhanced Saturation Magnetization. Polymers 2022;14:2935. [DOI: 10.3390/polym14142935] [Reference Citation Analysis]
5 Mu Y, Ma Z, Liang H, Zhang L, Wu H. Ferrite-based composites and morphology-controlled absorbers. Rare Met . [DOI: 10.1007/s12598-022-02045-7] [Reference Citation Analysis]
6 Yıldırım F, Kabakçı E, Şaş HS, Eskizeybek V. Multi‐walled carbon nanotube grafted 3D spacer multi‐scale composites for electromagnetic interference shielding. Polymer Composites. [DOI: 10.1002/pc.26885] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Luo J, Mahariq I, You KY, Mehrez S, Fayed M, Alamri S. Optimizing the layer arrangement in a three-layer absorber based on magneto-electric nanocomposite for enhanced microwave absorption. Ceramics International 2022. [DOI: 10.1016/j.ceramint.2022.07.075] [Reference Citation Analysis]
8 Huang C, Hsu P, Ke Z, Lin J, Shiu B, Lou C, Lin J. A Study on Highly Effective Electromagnetic Wave Shield Textile Shell Fabrics Made of Point Polyester/Metallic Core-Spun Yarns. Polymers 2022;14:2536. [DOI: 10.3390/polym14132536] [Reference Citation Analysis]
9 Gülmez N, Koçkal NU, Özen Ş, Ateş K. Corrosion potential and electromagnetic shielding effectiveness of geopolymer tiles produced with waste metal particles. Sādhanā 2022;47. [DOI: 10.1007/s12046-022-01891-6] [Reference Citation Analysis]
10 Abdul Kadar CH, Faisal M, Maruthi N, Raghavendra N, Prasanna BP, Manohara SR. Corrosion-Resistant Polyaniline-Coated Zinc Tungstate Nanocomposites with Enhanced Electric Properties for Electromagnetic Shielding Applications. Macromol Res . [DOI: 10.1007/s13233-022-0067-z] [Reference Citation Analysis]
11 Zhao W, Xu H, Zhao J, Zhu X, Lu Y, Ding C, He W, Bian J, Liu L, Ma L, Wang W, Zhou T, Zhou X, Li J, Liu S, Zhao Q. Flexible, lightweight and multi-level superimposed titanium carbide films for enhanced electromagnetic interference shielding. Chemical Engineering Journal 2022;437:135266. [DOI: 10.1016/j.cej.2022.135266] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Kadar CHA, Faisal M, Raghavendra N, Maruthi N, Prasanna BP, Nandan KR. Enhancing electromagnetic interference shielding effectiveness (EMI SE) of anticorrosive polypyrrole/zinc tungstate composites: multifunctional approach. J Mater Sci: Mater Electron. [DOI: 10.1007/s10854-022-08348-w] [Reference Citation Analysis]
13 Carvalho de Oliveira H, Lavoratti A, Miranda Pereira I, Indrusiak Silva T, Soares BG, Rossa Beltrami LV, José Zattera A. Epoxy resin/graphene nanoplatelets composites applied to galvanized steel with outstanding microwave absorber performance. Journal of Polymer Engineering 2022;0. [DOI: 10.1515/polyeng-2021-0209] [Reference Citation Analysis]
14 Benzaoui K, Ales A, Mekki A, Zaoui A, Bouhemadou A, Bouaouina B, Benyoubi F. Study of the substrate surface treatment of flexible polypyrrole-silver composite films on EMI shielding effectiveness: theoretical and experimental investigation. Frequenz 2022;0. [DOI: 10.1515/freq-2021-0219] [Reference Citation Analysis]
15 Das P, Deoghare AB, Ranjan Maity S. Synergistically improved thermal stability and electromagnetic interference shielding effectiveness (EMI SE) of in-situ synthesized polyaniline/sulphur doped reduced graphene oxide (PANI/S-RGO) nanocomposites. Ceramics International 2022;48:11031-42. [DOI: 10.1016/j.ceramint.2021.12.323] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
16 Devi N, Ray SS. Electromagnetic interference cognizance and potential of advanced polymer composites toward electromagnetic interference shielding: A review. Polymer Engineering & Sci 2022;62:591-621. [DOI: 10.1002/pen.25876] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
17 Mohamed F, Zaghlool R, El Hotaby W. Terahertz spectroscopic analysis of non-radiated and radiated synthetic and natural polymer / GO nanocomposites. Journal of Molecular Structure 2022;1250:131659. [DOI: 10.1016/j.molstruc.2021.131659] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Nasreen Taj M, Daruka Prasad B, Narapareddy R, Nagabhushana H, Ramakrishna G, Mahesh B, T Dadami S. PANI-molybdate nanocomposites: Structural, morphological and dielectric properties for the effective electromagnetic interference (EMI) shielding applications in X-band. Applied Surface Science Advances 2022;7:100203. [DOI: 10.1016/j.apsadv.2021.100203] [Reference Citation Analysis]
19 Pasha A, Khasim S, Darwish A, Hamdalla TA, Al-ghamdi S, Alfadhli S. Flexible, stretchable and electrically conductive PDMS decorated with polypyrrole/manganese-iron oxide nanocomposite as a multifunctional material for high performance EMI shielding applications. Synthetic Metals 2022;283:116984. [DOI: 10.1016/j.synthmet.2021.116984] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
20 Benzaoui K, Ales A, Mekki A, Zaoui A, Bouaouina B, Singh A, Mehelli O, Derradji M. Electromagnetic interference shielding effectiveness of polypyrrole-silver nanocomposite films on silane-modified flexible sheet. High Performance Polymers. [DOI: 10.1177/09540083211064535] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
21 Madhusudhan CK, Mahendra K, Raghavendra N, Revanasiddappa M, Faisal M. Corrosion-resistant polypyrrole-banana carbon (PPy-BC) nanocomposites for protection against electromagnetic interference: a green approach. J Mater Sci: Mater Electron. [DOI: 10.1007/s10854-021-07466-1] [Reference Citation Analysis]
22 Kwon D, Shim J, Kong J, Nam SY. Impacts of colorants on mechanical properties of epoxy-based fiber composites. Applied Surface Science Advances 2021;6:100178. [DOI: 10.1016/j.apsadv.2021.100178] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Rani P, Basheer Ahamed M, Deshmukh K. Dielectric and electromagnetic interference shielding performance of graphene nanoplatelets and copper oxide nanoparticles reinforced polyvinylidenefluoride/poly(3,4-ethylenedioxythiophene)-block-poly (ethylene glycol) blend nanocomposites. Synthetic Metals 2021;282:116923. [DOI: 10.1016/j.synthmet.2021.116923] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
24 Liu L, Chen X, Pan F. A review on electromagnetic shielding magnesium alloys. Journal of Magnesium and Alloys 2021;9:1906-21. [DOI: 10.1016/j.jma.2021.10.001] [Reference Citation Analysis]
25 Ouyang J. Application of intrinsically conducting polymers in flexible electronics. SmartMat 2021;2:263-85. [DOI: 10.1002/smm2.1059] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
26 Peymanfar R, Javanshir S, Naimi-jamal MR, Tavassoli SH. Morphology and medium influence on microwave characteristics of nanostructures: A review. J Mater Sci 2021;56:17457-77. [DOI: 10.1007/s10853-021-06394-z] [Cited by in Crossref: 13] [Cited by in F6Publishing: 6] [Article Influence: 13.0] [Reference Citation Analysis]
27 Maruthi N, Faisal M, Raghavendra N, Prasanna B, Manohara S, Revanasiddappa M. Anticorrosive polyaniline-coated copper oxide (PANI/CuO) nanocomposites with tunable electrical properties for broadband electromagnetic interference shielding. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021;621:126611. [DOI: 10.1016/j.colsurfa.2021.126611] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
28 Zahid M, Anum R, Siddique S, Shakir HF, Rehan Z. Polyaniline-based nanocomposites for electromagnetic interference shielding applications: A review. Journal of Thermoplastic Composite Materials. [DOI: 10.1177/08927057211022408] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
29 Kausar A. Polyaniline/graphene nanoplatelet nanocomposite towards high-end features and applications. Materials Research Innovations 2022;26:249-61. [DOI: 10.1080/14328917.2021.1934281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Kamkar M, Ghaffarkhah A, Hosseini E, Amini M, Ghaderi S, Arjmand M. Multilayer polymeric nanocomposites for electromagnetic interference shielding: fabrication, mechanisms, and prospects. New J Chem 2021;45:21488-507. [DOI: 10.1039/d1nj04626h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]