BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hwang H, Kreig A, Calvert J, Lormand J, Kwon Y, Daley JM, Sung P, Opresko PL, Myong S. Telomeric overhang length determines structural dynamics and accessibility to telomerase and ALT-associated proteins. Structure 2014;22:842-53. [PMID: 24836024 DOI: 10.1016/j.str.2014.03.013] [Cited by in Crossref: 40] [Cited by in F6Publishing: 34] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Paul T, Liou W, Cai X, Opresko PL, Myong S. TRF2 promotes dynamic and stepwise looping of POT1 bound telomeric overhang. Nucleic Acids Res 2021;49:12377-93. [PMID: 34850123 DOI: 10.1093/nar/gkab1123] [Reference Citation Analysis]
2 Jansson LI, Hentschel J, Parks JW, Chang TR, Lu C, Baral R, Bagshaw CR, Stone MD. Telomere DNA G-quadruplex folding within actively extending human telomerase. Proc Natl Acad Sci U S A 2019;116:9350-9. [PMID: 31019071 DOI: 10.1073/pnas.1814777116] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 12.0] [Reference Citation Analysis]
3 Hwang H, Opresko P, Myong S. Single-molecule real-time detection of telomerase extension activity. Sci Rep 2014;4:6391. [PMID: 25263700 DOI: 10.1038/srep06391] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 3.1] [Reference Citation Analysis]
4 Abraham Punnoose J, Ma Y, Hoque ME, Cui Y, Sasaki S, Guo AH, Nagasawa K, Mao H. Random Formation of G-Quadruplexes in the Full-Length Human Telomere Overhangs Leads to a Kinetic Folding Pattern with Targetable Vacant G-Tracts. Biochemistry 2018;57:6946-55. [PMID: 30480434 DOI: 10.1021/acs.biochem.8b00957] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 3.5] [Reference Citation Analysis]
5 Lee HT, Bose A, Lee CY, Opresko PL, Myong S. Molecular mechanisms by which oxidative DNA damage promotes telomerase activity. Nucleic Acids Res 2017;45:11752-65. [PMID: 28981887 DOI: 10.1093/nar/gkx789] [Cited by in Crossref: 34] [Cited by in F6Publishing: 30] [Article Influence: 6.8] [Reference Citation Analysis]
6 Fouquerel E, Parikh D, Opresko P. DNA damage processing at telomeres: The ends justify the means. DNA Repair (Amst) 2016;44:159-68. [PMID: 27233113 DOI: 10.1016/j.dnarep.2016.05.022] [Cited by in Crossref: 21] [Cited by in F6Publishing: 17] [Article Influence: 3.5] [Reference Citation Analysis]
7 Bandyopadhyay D, Mishra PP. Decoding the Structural Dynamics and Conformational Alternations of DNA Secondary Structures by Single-Molecule FRET Microspectroscopy. Front Mol Biosci 2021;8:725541. [PMID: 34540899 DOI: 10.3389/fmolb.2021.725541] [Reference Citation Analysis]
8 Parks JW, Stone MD. Single-Molecule Studies of Telomeres and Telomerase. Annu Rev Biophys 2017;46:357-77. [PMID: 28375735 DOI: 10.1146/annurev-biophys-062215-011256] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 3.4] [Reference Citation Analysis]
9 Benslimane Y, Harrington L. The lighthouse at the end of the chromosome. F1000Res 2015;4:F1000 Faculty Rev-1427. [PMID: 26918148 DOI: 10.12688/f1000research.6664.1] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
10 Qiu Y, Levendosky RF, Chakravarthy S, Patel A, Bowman GD, Myong S. The Chd1 Chromatin Remodeler Shifts Nucleosomal DNA Bidirectionally as a Monomer. Mol Cell 2017;68:76-88.e6. [PMID: 28943314 DOI: 10.1016/j.molcel.2017.08.018] [Cited by in Crossref: 36] [Cited by in F6Publishing: 29] [Article Influence: 7.2] [Reference Citation Analysis]
11 Paudel BP, Moye AL, Abou Assi H, El-Khoury R, Cohen SB, Holien JK, Birrento ML, Samosorn S, Intharapichai K, Tomlinson CG, Teulade-Fichou MP, González C, Beck JL, Damha MJ, van Oijen AM, Bryan TM. A mechanism for the extension and unfolding of parallel telomeric G-quadruplexes by human telomerase at single-molecule resolution. Elife 2020;9:e56428. [PMID: 32723475 DOI: 10.7554/eLife.56428] [Cited by in Crossref: 12] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
12 Mustafa G, Shiekh S, Gc K, Abeysirigunawardena S, Balci H. Interrogating accessibility of telomeric sequences with FRET-PAINT: evidence for length-dependent telomere compaction. Nucleic Acids Res 2021;49:3371-80. [PMID: 33693934 DOI: 10.1093/nar/gkab067] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Lee HT, Sanford S, Paul T, Choe J, Bose A, Opresko PL, Myong S. Position-Dependent Effect of Guanine Base Damage and Mutations on Telomeric G-Quadruplex and Telomerase Extension. Biochemistry 2020;59:2627-39. [PMID: 32578995 DOI: 10.1021/acs.biochem.0c00434] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
14 Aggarwal V, Ha T. Single-molecule fluorescence microscopy of native macromolecular complexes. Curr Opin Struct Biol 2016;41:225-32. [PMID: 27662375 DOI: 10.1016/j.sbi.2016.09.006] [Cited by in Crossref: 30] [Cited by in F6Publishing: 24] [Article Influence: 5.0] [Reference Citation Analysis]
15 Dolinnaya NG, Ogloblina AM, Yakubovskaya MG. Structure, Properties, and Biological Relevance of the DNA and RNA G-Quadruplexes: Overview 50 Years after Their Discovery. Biochemistry (Mosc) 2016;81:1602-49. [PMID: 28260487 DOI: 10.1134/S0006297916130034] [Cited by in Crossref: 33] [Cited by in F6Publishing: 21] [Article Influence: 6.6] [Reference Citation Analysis]
16 Sandhu R, Li B. Telomerase activity is required for the telomere G-overhang structure in Trypanosoma brucei. Sci Rep 2017;7:15983. [PMID: 29167542 DOI: 10.1038/s41598-017-16182-y] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
17 Tippana R, Hwang H, Opresko PL, Bohr VA, Myong S. Single-molecule imaging reveals a common mechanism shared by G-quadruplex-resolving helicases. Proc Natl Acad Sci U S A 2016;113:8448-53. [PMID: 27407146 DOI: 10.1073/pnas.1603724113] [Cited by in Crossref: 60] [Cited by in F6Publishing: 46] [Article Influence: 10.0] [Reference Citation Analysis]
18 Kopylov M, Bass HW, Stroupe ME. The Maize ( Zea mays L.) Nucleoside Diphosphate Kinase1 (ZmNDPK1) Gene Encodes a Human NM23-H2 Homologue That Binds and Stabilizes G-Quadruplex DNA. Biochemistry 2015;54:1743-57. [DOI: 10.1021/bi501284g] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
19 Bryan TM. G-Quadruplexes at Telomeres: Friend or Foe? Molecules 2020;25:E3686. [PMID: 32823549 DOI: 10.3390/molecules25163686] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
20 Aznauryan M, Søndergaard S, Noer SL, Schiøtt B, Birkedal V. A direct view of the complex multi-pathway folding of telomeric G-quadruplexes. Nucleic Acids Res 2016;44:11024-32. [PMID: 27799468 DOI: 10.1093/nar/gkw1010] [Cited by in Crossref: 41] [Cited by in F6Publishing: 39] [Article Influence: 6.8] [Reference Citation Analysis]
21 Fouquerel E, Lormand J, Bose A, Lee HT, Kim GS, Li J, Sobol RW, Freudenthal BD, Myong S, Opresko PL. Oxidative guanine base damage regulates human telomerase activity. Nat Struct Mol Biol 2016;23:1092-100. [PMID: 27820808 DOI: 10.1038/nsmb.3319] [Cited by in Crossref: 88] [Cited by in F6Publishing: 83] [Article Influence: 14.7] [Reference Citation Analysis]
22 De Rosa M, Johnson SA, Opresko PL. Roles for the 8-Oxoguanine DNA Repair System in Protecting Telomeres From Oxidative Stress. Front Cell Dev Biol 2021;9:758402. [PMID: 34869348 DOI: 10.3389/fcell.2021.758402] [Reference Citation Analysis]
23 Noer SL, Preus S, Gudnason D, Aznauryan M, Mergny JL, Birkedal V. Folding dynamics and conformational heterogeneity of human telomeric G-quadruplex structures in Na+ solutions by single molecule FRET microscopy. Nucleic Acids Res 2016;44:464-71. [PMID: 26615192 DOI: 10.1093/nar/gkv1320] [Cited by in Crossref: 45] [Cited by in F6Publishing: 40] [Article Influence: 6.4] [Reference Citation Analysis]
24 Li C, Delaney S. Challenges for base excision repair enzymes: Acquiring access to damaged DNA in chromatin. Enzymes 2019;45:27-57. [PMID: 31627880 DOI: 10.1016/bs.enz.2019.07.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Kahlscheuer ML, Widom J, Walter NG. Single-Molecule Pull-Down FRET to Dissect the Mechanisms of Biomolecular Machines. Methods Enzymol 2015;558:539-70. [PMID: 26068753 DOI: 10.1016/bs.mie.2015.01.009] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.7] [Reference Citation Analysis]
26 Hopfner KP. Single-molecule choreography between telomere proteins and G quadruplexes. Structure 2014;22:801-2. [PMID: 24918337 DOI: 10.1016/j.str.2014.05.011] [Reference Citation Analysis]
27 Paul T, Ha T, Myong S. Regeneration of PEG slide for multiple rounds of single-molecule measurements. Biophys J 2021;120:1788-99. [PMID: 33675764 DOI: 10.1016/j.bpj.2021.02.031] [Reference Citation Analysis]
28 Chatain J, Hatem G, Delagoutte E, Riou JF, Alberti P, Saintomé C. Multiple hPOT1-TPP1 cooperatively unfold contiguous telomeric G-quadruplexes proceeding from 3' toward 5', a feature due to a 3'-end binding preference and to structuring of telomeric DNA. Nucleic Acids Res 2021;49:10735-46. [PMID: 34534331 DOI: 10.1093/nar/gkab768] [Reference Citation Analysis]
29 Noureini SK, Esmaeili H, Abachi F, Khiali S, Islam B, Kuta M, Saboury AA, Hoffmann M, Sponer J, Parkinson G, Haider S. Selectivity of major isoquinoline alkaloids from Chelidonium majus towards telomeric G-quadruplex: A study using a transition-FRET (t-FRET) assay. Biochim Biophys Acta Gen Subj 2017;1861:2020-30. [PMID: 28479277 DOI: 10.1016/j.bbagen.2017.05.002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
30 Bugaut A, Alberti P. Understanding the stability of DNA G-quadruplex units in long human telomeric strands. Biochimie 2015;113:125-33. [PMID: 25888167 DOI: 10.1016/j.biochi.2015.04.003] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 3.3] [Reference Citation Analysis]
31 Mitra J, Ha T. Streamlining effects of extra telomeric repeat on telomeric DNA folding revealed by fluorescence-force spectroscopy. Nucleic Acids Res 2019;47:11044-56. [PMID: 31617570 DOI: 10.1093/nar/gkz906] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
32 Kreig A, Calvert J, Sanoica J, Cullum E, Tipanna R, Myong S. G-quadruplex formation in double strand DNA probed by NMM and CV fluorescence. Nucleic Acids Res 2015;43:7961-70. [PMID: 26202971 DOI: 10.1093/nar/gkv749] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 5.9] [Reference Citation Analysis]
33 Mitra J, Makurath MA, Ngo TTM, Troitskaia A, Chemla YR, Ha T. Extreme mechanical diversity of human telomeric DNA revealed by fluorescence-force spectroscopy. Proc Natl Acad Sci U S A 2019;116:8350-9. [PMID: 30944218 DOI: 10.1073/pnas.1815162116] [Cited by in Crossref: 27] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
34 Kim Y, Myong S. RNA Remodeling Activity of DEAD Box Proteins Tuned by Protein Concentration, RNA Length, and ATP. Mol Cell 2016;63:865-76. [PMID: 27546789 DOI: 10.1016/j.molcel.2016.07.010] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 4.3] [Reference Citation Analysis]
35 Lee CY, McNerney C, Myong S. G-Quadruplex and Protein Binding by Single-Molecule FRET Microscopy. Methods Mol Biol 2019;2035:309-22. [PMID: 31444758 DOI: 10.1007/978-1-4939-9666-7_18] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Tippana R, Chen MC, Demeshkina NA, Ferré-D'Amaré AR, Myong S. RNA G-quadruplex is resolved by repetitive and ATP-dependent mechanism of DHX36. Nat Commun 2019;10:1855. [PMID: 31015431 DOI: 10.1038/s41467-019-09802-w] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 8.7] [Reference Citation Analysis]
37 Husbands AY, Aggarwal V, Ha T, Timmermans MC. In Planta Single-Molecule Pull-Down Reveals Tetrameric Stoichiometry of HD-ZIPIII:LITTLE ZIPPER Complexes. Plant Cell 2016;28:1783-94. [PMID: 27385814 DOI: 10.1105/tpc.16.00289] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
38 Maleki P, Budhathoki JB, Roy WA, Balci H. A practical guide to studying G-quadruplex structures using single-molecule FRET. Mol Genet Genomics 2017;292:483-98. [PMID: 28150040 DOI: 10.1007/s00438-017-1288-2] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]