BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Huang L, Desai R, Conrad DN, Leite NC, Akshinthala D, Lim CM, Gonzalez R, Muthuswamy LB, Gartner Z, Muthuswamy SK. Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids. Cell Stem Cell 2021;28:1090-1104.e6. [PMID: 33915081 DOI: 10.1016/j.stem.2021.03.022] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Telang NT. Stem Cell Models for Breast and Colon Cancer: Experimental Approach for Drug Discovery. IJMS 2022;23:9223. [DOI: 10.3390/ijms23169223] [Reference Citation Analysis]
2 Yoon YJ, Kim D, Tak KY, Hwang S, Kim J, Sim NS, Cho JM, Choi D, Ji Y, Hur JK, Kim H, Park JE, Lim JY. Salivary gland organoid culture maintains distinct glandular properties of murine and human major salivary glands. Nat Commun 2022;13:3291. [PMID: 35672412 DOI: 10.1038/s41467-022-30934-z] [Reference Citation Analysis]
3 Melzer MK, Breunig M, Arnold F, Wezel F, Azoitei A, Roger E, Krüger J, Merkle J, Schütte L, Resheq Y, Hänle M, Zehe V, Zengerling F, Azoitei N, Klein L, Penz F, Singh SK, Seufferlein T, Hohwieler M, Bolenz C, Günes C, Gout J, Kleger A. Organoids at the PUB: The Porcine Urinary Bladder Serves as a Pancreatic Niche for Advanced Cancer Modeling. Adv Healthc Mater 2022;11:e2102345. [PMID: 35114730 DOI: 10.1002/adhm.202102345] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
4 Shao Y, Fu J. Engineering multiscale structural orders for high-fidelity embryoids and organoids. Cell Stem Cell 2022;29:722-43. [PMID: 35523138 DOI: 10.1016/j.stem.2022.04.003] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Casamitjana J, Espinet E, Rovira M. Pancreatic Organoids for Regenerative Medicine and Cancer Research. Front Cell Dev Biol 2022;10:886153. [DOI: 10.3389/fcell.2022.886153] [Reference Citation Analysis]
6 Tan TH, Liu J, Grapin-Botton A. Mapping and exploring the organoid state space using synthetic biology. Semin Cell Dev Biol 2022:S1084-9521(22)00141-0. [PMID: 35466054 DOI: 10.1016/j.semcdb.2022.04.015] [Reference Citation Analysis]
7 Aghazadeh Y, Sarangi F, Poon F, Nkennor B, McGaugh EC, Nunes SS, Nostro MC. GP2-enriched pancreatic progenitors give rise to functional beta cells in vivo and eliminate the risk of teratoma formation. Stem Cell Reports 2022:S2213-6711(22)00137-0. [PMID: 35364010 DOI: 10.1016/j.stemcr.2022.03.004] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Melzer MK, Roger E, Kleger A. State-matched organoid models to fight pancreatic cancer. Trends in Cancer 2022. [DOI: 10.1016/j.trecan.2022.03.003] [Reference Citation Analysis]
9 Christin JR, Shen MM. Modeling tumor plasticity in organoid models of human cancer. Trends Cancer 2022:S2405-8033(21)00254-5. [PMID: 35000880 DOI: 10.1016/j.trecan.2021.12.004] [Reference Citation Analysis]
10 Malinova A, Veghini L, Real FX, Corbo V. Cell Lineage Infidelity in PDAC Progression and Therapy Resistance. Front Cell Dev Biol 2021;9:795251. [PMID: 34926472 DOI: 10.3389/fcell.2021.795251] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
11 McDonald OG. The biology of pancreatic cancer morphology. Pathology 2021:S0031-3025(21)00522-5. [PMID: 34872751 DOI: 10.1016/j.pathol.2021.09.012] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Krog RT, de Miranda NFCC, Vahrmeijer AL, Kooreman NG. The Potential of Induced Pluripotent Stem Cells to Advance the Treatment of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021;13:5789. [PMID: 34830945 DOI: 10.3390/cancers13225789] [Reference Citation Analysis]
13 Li J, Yu N, Li X, Cui M, Guo Q. The Single-Cell Sequencing: A Dazzling Light Shining on the Dark Corner of Cancer. Front Oncol 2021;11:759894. [PMID: 34745998 DOI: 10.3389/fonc.2021.759894] [Reference Citation Analysis]
14 Dumas MP, Xia S, Bear CE, Ratjen F. Perspectives on the translation of in-vitro studies to precision medicine in Cystic Fibrosis. EBioMedicine 2021;73:103660. [PMID: 34740114 DOI: 10.1016/j.ebiom.2021.103660] [Reference Citation Analysis]
15 Turhan AG, Hwang JW, Chaker D, Tasteyre A, Latsis T, Griscelli F, Desterke C, Bennaceur-Griscelli A. iPSC-Derived Organoids as Therapeutic Models in Regenerative Medicine and Oncology. Front Med (Lausanne) 2021;8:728543. [PMID: 34722569 DOI: 10.3389/fmed.2021.728543] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
16 Merkle J, Breunig M, Schmid M, Allgöwer C, Krüger J, Melzer MK, Bens S, Siebert R, Perkhofer L, Azoitei N, Seufferlein T, Heller S, Meier M, Müller M, Kleger A, Hohwieler M. CDKN2A-Mutated Pancreatic Ductal Organoids from Induced Pluripotent Stem Cells to Model a Cancer Predisposition Syndrome. Cancers (Basel) 2021;13:5139. [PMID: 34680288 DOI: 10.3390/cancers13205139] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
17 Arnold F, Kleger A. [Model systems in gastroenterological research : From animal models to human organoids to the clinic]. Pathologe 2021. [PMID: 34623464 DOI: 10.1007/s00292-021-00996-9] [Reference Citation Analysis]
18 Marx U, Accastelli E, David R, Erfurth H, Koenig L, Lauster R, Ramme AP, Reinke P, Volk HD, Winter A, Dehne EM. An Individual Patient's "Body" on Chips-How Organismoid Theory Can Translate Into Your Personal Precision Therapy Approach. Front Med (Lausanne) 2021;8:728866. [PMID: 34589503 DOI: 10.3389/fmed.2021.728866] [Reference Citation Analysis]
19 Pitarresi JR, Rustgi AK. Single-cell analysis of ductal differentiation. Nat Biomed Eng 2021;5:785-6. [PMID: 34389821 DOI: 10.1038/s41551-021-00782-1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
20 Wiedenmann S, Breunig M, Merkle J, von Toerne C, Georgiev T, Moussus M, Schulte L, Seufferlein T, Sterr M, Lickert H, Weissinger SE, Möller P, Hauck SM, Hohwieler M, Kleger A, Meier M. Single-cell-resolved differentiation of human induced pluripotent stem cells into pancreatic duct-like organoids on a microwell chip. Nat Biomed Eng 2021;5:897-913. [PMID: 34239116 DOI: 10.1038/s41551-021-00757-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 19] [Article Influence: 2.0] [Reference Citation Analysis]
21 Pitarresi JR, Rustgi AK. Pancreatic plasticity: Unlocking exocrine lineage specification. Cell Stem Cell 2021;28:987-8. [PMID: 34087158 DOI: 10.1016/j.stem.2021.05.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Luo J, Li P. Human pluripotent stem cell-derived brain organoids as in vitro models for studying neural disorders and cancer. Cell Biosci 2021;11:99. [PMID: 34049587 DOI: 10.1186/s13578-021-00617-1] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
23 Breunig M, Merkle J, Wagner M, Melzer MK, Barth TFE, Engleitner T, Krumm J, Wiedenmann S, Cohrs CM, Perkhofer L, Jain G, Krüger J, Hermann PC, Schmid M, Madácsy T, Varga Á, Griger J, Azoitei N, Müller M, Wessely O, Robey PG, Heller S, Dantes Z, Reichert M, Günes C, Bolenz C, Kuhn F, Maléth J, Speier S, Liebau S, Sipos B, Kuster B, Seufferlein T, Rad R, Meier M, Hohwieler M, Kleger A. Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stem cells. Cell Stem Cell 2021;28:1105-1124.e19. [PMID: 33915078 DOI: 10.1016/j.stem.2021.03.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]