BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhao Y, Zhang X, Li W, Li Z, Zhang H, Chen M, Sun W, Xiao Y, Zhao J, Li Y. High-performance electrochromic WO3 film driven by controllable crystalline structure and its all-solid-state device. Solar Energy Materials and Solar Cells 2022;237:111564. [DOI: 10.1016/j.solmat.2021.111564] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Ding Y, Wang M, Mei Z, Diao X. Flexible Inorganic All-Solid-State Electrochromic Devices toward Visual Energy Storage and Two-Dimensional Color Tunability. ACS Appl Mater Interfaces 2023. [PMID: 36926798 DOI: 10.1021/acsami.2c20986] [Reference Citation Analysis]
2 Zhang Z, Chen H, Lin Z, Guan X, Zhang J, Tang X, Zhan Y, Luo J. Pivotal Role of the Granularity Uniformity of the WO3 Film Electrode upon the Cyclic Stability during Cation Insertion/Extraction. Nanomaterials 2023;13:973. [DOI: 10.3390/nano13060973] [Reference Citation Analysis]
3 Wang H, Wang J, Shi Q, Su Y, Tang P, Huang S, Lin S, Dai M. Influence of LiPON thickness on the electro-optical performance of inorganic all-solid-state electrochromic devices. Solar Energy Materials and Solar Cells 2023;251:112140. [DOI: 10.1016/j.solmat.2022.112140] [Reference Citation Analysis]
4 Rusu R, Damaceanu M, Ursache S, Constantin C. Tuning the main electrochromic features by polymer backbone variation of triphenylamine-based polyamides. Journal of Photochemistry and Photobiology A: Chemistry 2023;435:114272. [DOI: 10.1016/j.jphotochem.2022.114272] [Reference Citation Analysis]
5 Tang Z, Li H, Liu Y, Liang J, Liu J, Tang H, Wu Q, Jiang F, Jiang W. Advanced electrochromic properties of Nb-doped WO3 inverse opal films in NIR region by slow photon effect-assisted enhancement of localized surface plasmon resonance. Applied Surface Science 2023. [DOI: 10.1016/j.apsusc.2023.156802] [Reference Citation Analysis]
6 Li W, Cui Y. A self-healing polyacrylic acid-based hydrogel electrolyte for flexible quasi-solid-state electrochromic device. Solar Energy Materials and Solar Cells 2023;250:112071. [DOI: 10.1016/j.solmat.2022.112071] [Reference Citation Analysis]
7 Sharma R, Nihal, Bansal K, Dhaliwal A, Sharma M, Goswamy J. Synthesis and characterization of WO3 based thin film electrode material for electrochromic device. Materials Today: Proceedings 2022. [DOI: 10.1016/j.matpr.2022.12.189] [Reference Citation Analysis]
8 Jin S, Gao C, Guo J, Fang M, Gao Q, Ren X, Chao M, Liang E. Effects of crystal structure and morphology on the electrochromic properties of Cs WO3. Solid State Ionics 2022;385:116011. [DOI: 10.1016/j.ssi.2022.116011] [Reference Citation Analysis]
9 Ding Y, Wang M, Mei Z, Diao X. Novel Prussian White@MnO2-Based Inorganic Electrochromic Energy Storage Devices with Integrated Flexibility, Multicolor, and Long Life. ACS Appl Mater Interfaces 2022. [PMID: 36269142 DOI: 10.1021/acsami.2c12484] [Reference Citation Analysis]
10 Sharma R, Nihal, Sharma M, Goswamy J. Synthesis and characterization of MoS 2 / WO 3 nanocomposite for electrochromic device application. Intl J of Energy Research. [DOI: 10.1002/er.8726] [Reference Citation Analysis]
11 Ahmad K, Song G, Kim H. Fabrication of Tungsten Oxide/Graphene Quantum Dot (WO 3 @GQD) Thin Films on Indium Tin Oxide-Based Glass and Flexible Substrates for the Construction of Electrochromic Devices for Smart Window Applications. ACS Sustainable Chem Eng . [DOI: 10.1021/acssuschemeng.2c03229] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Kong S, Zhang G, Li M, Yao R, Guo C, Ning H, Zhang J, Tao R, Yan H, Lu X. Investigation of an Electrochromic Device Based on Ammonium Metatungstate-Iron (II) Chloride Electrochromic Liquid. Micromachines (Basel) 2022;13:1345. [PMID: 36014270 DOI: 10.3390/mi13081345] [Reference Citation Analysis]