BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wang X, Feng Y, Wang A, Mei L, Yuan P, Luo X, Feng J. A facile ratiometric electrochemical strategy for ultrasensitive monitoring HER2 using polydopamine-grafted-ferrocene/reduced graphene oxide, Au@Ag nanoshuttles and hollow Ni@PtNi yolk-shell nanocages. Sensors and Actuators B: Chemical 2021;331:129460. [DOI: 10.1016/j.snb.2021.129460] [Cited by in Crossref: 6] [Cited by in F6Publishing: 21] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Song P, Wang M, Xue Y, Wang A, Mei L, Feng J. Bimetallic PtNi nanozyme-driven dual-amplified photoelectrochemical aptasensor for ultrasensitive detection of sulfamethazine based on Z-scheme heterostructured Co9S8@In-CdS nanotubes. Sensors and Actuators B: Chemical 2022;371:132519. [DOI: 10.1016/j.snb.2022.132519] [Reference Citation Analysis]
2 Kassa A, Amare M, Benor A, Tigineh GT, Beyene Y, Tefera M, Abebe A. Potentiodynamic Poly(resorcinol)-Modified Glassy Carbon Electrode as a Voltammetric Sensor for Determining Cephalexin and Cefadroxil Simultaneously in Pharmaceutical Formulation and Biological Fluid Samples. ACS Omega. [DOI: 10.1021/acsomega.2c04514] [Reference Citation Analysis]
3 Zhang W, Wen J, Wang J, Yang K, Sun S. Recent development and application of ratiometric electrochemical biosensor. Journal of Electroanalytical Chemistry 2022;921:116653. [DOI: 10.1016/j.jelechem.2022.116653] [Reference Citation Analysis]
4 Aydın EB, Aydın M, Sezgintürk MK. Impedimetric Detection of Calreticulin by a Disposable Immunosensor Modified with a Single-Walled Carbon Nanotube-Conducting Polymer Nanocomposite. ACS Biomater Sci Eng 2022. [PMID: 35920068 DOI: 10.1021/acsbiomaterials.2c00499] [Reference Citation Analysis]
5 Mostafa IM, Tian Y, Anjum S, Hanif S, Hosseini M, Lou B, Xu G. Comprehensive review on the electrochemical biosensors of different breast cancer biomarkers. Sensors and Actuators B: Chemical 2022;365:131944. [DOI: 10.1016/j.snb.2022.131944] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Nong C, Yang B, Li X, Feng S, Cui H. An ultrasensitive electrochemical immunosensor based on in-situ growth of CuWO4 nanoparticles on MoS2 and chitosan-gold nanoparticles for cortisol detection. Microchemical Journal 2022;179:107434. [DOI: 10.1016/j.microc.2022.107434] [Reference Citation Analysis]
7 Yao T, Feng J, Xiong Q, Chu C, Xu Y, Ma Z, Han H. Regenerating electrochemical detection platform by electro-oxidation mediated host–guest dissociation between 6-mercapto-6-deoxy-β-cyclodextrin and N,N-dimethylaminomethylferrocene. Chemical Engineering Journal 2022;439:135599. [DOI: 10.1016/j.cej.2022.135599] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Ranjan P, Gaur S, Yadav H, Urgunde AB, Singh V, Patel A, Vishwakarma K, Kalirawana D, Gupta R, Kumar P. 2D materials: increscent quantum flatland with immense potential for applications. Nano Converg 2022;9:26. [PMID: 35666392 DOI: 10.1186/s40580-022-00317-7] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Feng Y, He J, Jiang L, Chen D, Wang A, Feng J. Novel sandwich-typed electrochemical immunosensing of C-reactive protein using multiply twinned AuPtRh nanobead chains and nitrogen-rich porous carbon nanospheres decorated with Au nanoparticles. Sensors and Actuators B: Chemical 2022;358:131518. [DOI: 10.1016/j.snb.2022.131518] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
10 Goswami PP, Rotake DR, Singh SG. 2-D material enhanced ultrasensitive electrochemical sensing of Pro-BNP peptide towards the risk-assessment of human heart. Sensors and Actuators B: Chemical 2022;357:131382. [DOI: 10.1016/j.snb.2022.131382] [Reference Citation Analysis]
11 Xia Y, Hu X, Liu Y, Zhao F, Zeng B. Molecularly imprinted ratiometric electrochemical sensor based on carbon nanotubes/cuprous oxide nanoparticles/titanium carbide MXene composite for diethylstilbestrol detection. Mikrochim Acta 2022;189:137. [PMID: 35260926 DOI: 10.1007/s00604-022-05249-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
12 Cui H, An K, Wang C, Chen Y, Jia S, Qian J, Hao N, Wei J, Wang K. A disposable ratiometric electrochemical aptasensor with exonuclease I-powered target recycling amplification for highly sensitive detection of aflatoxin B1. Sensors and Actuators B: Chemical 2022;355:131238. [DOI: 10.1016/j.snb.2021.131238] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
13 Zhang C, Liu L, Li H, Hu J, Zhang J, Zhou H, Zhang Z, Du X. An oriented antibody immobilization based electrochemical platform for detection of leptin in human with different body mass index. Sensors and Actuators B: Chemical 2022;353:131074. [DOI: 10.1016/j.snb.2021.131074] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wu R, Zhang F, Ji X, Liu Y, Guo X, Tian G, Liu B. The mini-review for synthesis of core@Ag nanocomposite. Arabian Journal of Chemistry 2022;15:103519. [DOI: 10.1016/j.arabjc.2021.103519] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Amini N, Shamsipur M, Naderi K, Maleki A. Construction of a highly sensitive immunosensor based on antibody immunoglobulin G/3-(trimethoxysilyl) propylamine/graphene oxide for antigen-specific immunoglobulin G detection. Microchemical Journal 2022. [DOI: 10.1016/j.microc.2022.107218] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Huang X, Miao J, Fang J, Xu X, Wei Q, Cao W. Ratiometric Electrochemical Immunosensor Based on L-cysteine Grafted Ferrocene for Detection of Neuron Specific Enolase. Talanta 2021;:123075. [PMID: 34809982 DOI: 10.1016/j.talanta.2021.123075] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Feng Y, Zhu J, Wang A, Mei L, Luo X, Feng J. AuPt nanocrystals/polydopamine supported on open-pored hollow carbon nanospheres for a dual-signaling electrochemical ratiometric immunosensor towards h-FABP detection. Sensors and Actuators B: Chemical 2021;346:130501. [DOI: 10.1016/j.snb.2021.130501] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 10.0] [Reference Citation Analysis]
18 Hassanpour S, Hasanzadeh M. Label-free electrochemical-immunoassay of cancer biomarkers: Recent progress and challenges in the efficient diagnosis of cancer employing electroanalysis and based on point of care (POC). Microchemical Journal 2021;168:106424. [DOI: 10.1016/j.microc.2021.106424] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
19 Wu D, Ma C, Pan F, Tao Y, Kong Y. Strategies to Achieve a Ferrocene-Based Polymer with Reversible Redox Activity for Chiral Electroanalysis of Nonelectroactive Amino Acids. Anal Chem 2021;93:10160-6. [PMID: 34255968 DOI: 10.1021/acs.analchem.1c01158] [Reference Citation Analysis]
20 Ahirwar R, Khan N, Kumar S. Aptamer-based sensing of breast cancer biomarkers: a comprehensive review of analytical figures of merit. Expert Rev Mol Diagn 2021;21:703-21. [PMID: 33877005 DOI: 10.1080/14737159.2021.1920397] [Reference Citation Analysis]
21 Wang XY, Feng YG, Wang AJ, Mei LP, Luo X, Xue Y, Feng JJ. Facile construction of ratiometric electrochemical immunosensor using hierarchical PtCoIr nanowires and porous SiO2@Ag nanoparticles for accurate detection of septicemia biomarker. Bioelectrochemistry 2021;140:107802. [PMID: 33794412 DOI: 10.1016/j.bioelechem.2021.107802] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]