BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhou Y, Li F, Wu H, Chen Y, Yin H, Ai S, Wang J. Electrochemical aptasensing strategy for kanamycin detection based on target-triggered single-strand DNA adsorption on MoS2 nanosheets and enzymatic signal amplification. Sensors and Actuators B: Chemical 2019;296:126664. [DOI: 10.1016/j.snb.2019.126664] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Li J, Luo M, Yang H, Ma C, Cai R, Tan W. Novel Dual-Signal Electrochemiluminescence Aptasensor Involving the Resonance Energy Transform System for Kanamycin Detection. Anal Chem 2022. [PMID: 35420408 DOI: 10.1021/acs.analchem.2c01163] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
2 Majdinasab M, Mishra RK, Tang X, Marty JL. Detection of antibiotics in food: New achievements in the development of biosensors. TrAC Trends in Analytical Chemistry 2020;127:115883. [DOI: 10.1016/j.trac.2020.115883] [Cited by in Crossref: 31] [Cited by in F6Publishing: 16] [Article Influence: 15.5] [Reference Citation Analysis]
3 Tang T, Liu Y, Jiang Y. Recent Progress on Highly Selective and Sensitive Electrochemical Aptamer-based Sensors. Chem Res Chin Univ . [DOI: 10.1007/s40242-022-2084-z] [Reference Citation Analysis]
4 Song J, Huang M, Jiang N, Zheng S, Mu T, Meng L, Liu Y, Liu J, Chen G. Ultrasensitive detection of amoxicillin by TiO2-g-C3N4@AuNPs impedimetric aptasensor: Fabrication, optimization, and mechanism. Journal of Hazardous Materials 2020;391:122024. [DOI: 10.1016/j.jhazmat.2020.122024] [Cited by in Crossref: 22] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
5 Tang Y, Hu Y, Zhou P, Wang C, Tao H, Wu Y. Colorimetric Detection of Kanamycin Residue in Foods Based on the Aptamer-Enhanced Peroxidase-Mimicking Activity of Layered WS2 Nanosheets. J Agric Food Chem 2021;69:2884-93. [PMID: 33646795 DOI: 10.1021/acs.jafc.1c00925] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
6 Jiang D, Qin M, Zhang L, Shan X, Chen Z. Ultrasensitive all-solid-state electrochemiluminescence platform for kanamycin detection based on the pore confinement effect of 0D g-C3N4 quantum dots/3D graphene hydrogel. Sensors and Actuators B: Chemical 2021;345:130343. [DOI: 10.1016/j.snb.2021.130343] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
7 Xie Y, Wang H, Yuwen X, Lai G. Exo III-Catalyzed Release of a Zn2+-Ligation DNAzyme to Drive the Strand Displacement Reaction and Gold Aggregation for the Homogeneous Bioassay of Kanamycin Antibiotics. J Agric Food Chem 2021;69:10371-8. [PMID: 34436884 DOI: 10.1021/acs.jafc.1c04030] [Reference Citation Analysis]
8 Huang Z, Li Z, Chen Y, Xu L, Xie Q, Deng H, Chen W, Peng H. Regulating Valence States of Gold Nanocluster as a New Strategy for the Ultrasensitive Electrochemiluminescence Detection of Kanamycin. Anal Chem 2021;93:4635-40. [PMID: 33661613 DOI: 10.1021/acs.analchem.1c00063] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Zhou W, Xu L, Jiang B. Target-initiated autonomous synthesis of metal-ion dependent DNAzymes for label-free and amplified fluorescence detection of kanamycin in milk samples. Anal Chim Acta 2021;1148:238195. [PMID: 33516378 DOI: 10.1016/j.aca.2020.12.070] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
10 Xue Y, Zhang H, Han Z, He H. Electrochemical impedimetric aptasensors based on hyper-cross-linked porous organic frameworks for the determination of kanamycin. J Mater Chem C 2021;9:12566-72. [DOI: 10.1039/d1tc02143e] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Ren H, Han Q, Zhang S, Huang Y, Chen Y, Dai H, Yan J, Lin Y. A photothermal assisted in situ signal-amplified electrochemical immunoassay based on multifunctional probe for detecting autoimmune hepatitis marker. Sensors and Actuators B: Chemical 2020;309:127823. [DOI: 10.1016/j.snb.2020.127823] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
12 Chen Y, Zhao L, Wu X, Dong Y, Wang G. Spontaneously formation of peroxidase mimetics on CuWO4 for homogeneous and universal aptasensing platform. Sensors and Actuators B: Chemical 2022;367:132040. [DOI: 10.1016/j.snb.2022.132040] [Reference Citation Analysis]
13 Sharma A, Majdinasab M, Khan R, Li Z, Hayat A, Marty JL. Nanomaterials in fluorescence-based biosensors: Defining key roles. Nano-Structures & Nano-Objects 2021;27:100774. [DOI: 10.1016/j.nanoso.2021.100774] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
14 Wang BB, Zhao X, Chen LJ, Yang C, Yan XP. Functionalized Persistent Luminescence Nanoparticle-Based Aptasensor for Autofluorescence-free Determination of Kanamycin in Food Samples. Anal Chem 2021;93:2589-95. [PMID: 33410662 DOI: 10.1021/acs.analchem.0c04648] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
15 Yue F, Li F, Kong Q, Guo Y, Sun X. Recent advances in aptamer-based sensors for aminoglycoside antibiotics detection and their applications. Sci Total Environ 2021;762:143129. [PMID: 33121792 DOI: 10.1016/j.scitotenv.2020.143129] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
16 Liu S, Chen Y, Ruan Z, Lin J, Kong W. Development of label-free fluorescent biosensor for the detection of kanamycin based on aptamer capped metal-organic framework. Environ Res 2021;:112617. [PMID: 34968433 DOI: 10.1016/j.envres.2021.112617] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Huang W, Zhou Y, Zhan D, Lai G. Homogeneous biorecognition reaction-induced assembly of DNA nanostructures for ultrasensitive electrochemical detection of kanamycin antibiotic. Anal Chim Acta 2021;1154:338317. [PMID: 33736811 DOI: 10.1016/j.aca.2021.338317] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Yin F, Cheng S, Liu S, Ma C, Wang L, Zhao R, Lin JM, Hu Q. A portable digital optical kanamycin sensor developed by surface-anchored liquid crystal droplets. J Hazard Mater 2021;420:126601. [PMID: 34265652 DOI: 10.1016/j.jhazmat.2021.126601] [Reference Citation Analysis]
19 Zhang C, Jiang C, Lan L, Ping J, Ye Z, Ying Y. Nanomaterial-based biosensors for agro-product safety. TrAC Trends in Analytical Chemistry 2021;143:116369. [DOI: 10.1016/j.trac.2021.116369] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
20 Lu L, Yang Q, Xu Q, Sun Y, Tang S, Tang X, Liang H, Yu Y. Two-dimensional materials beyond graphene for the detection and removal of antibiotics: A critical review. Critical Reviews in Environmental Science and Technology. [DOI: 10.1080/10643389.2021.1929001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
21 Yao Y, Hu T, Song C, Liu C, Kong D, Huang C, Zhu J, Shen W, Shi H, Tang S. Multiply-amplified strategy for the ultrasensitive detection of kanamycin via aptamer-triggered three-dimensional G-quadruplex/Ni-Fe layered double oxide frame networks. Anal Chim Acta 2021;1187:339169. [PMID: 34753567 DOI: 10.1016/j.aca.2021.339169] [Reference Citation Analysis]
22 Zhao T, Chen Q, Wen Y, Bian X, Tao Q, Liu G, Yan J. A competitive colorimetric aptasensor for simple and sensitive detection of kanamycin based on terminal deoxynucleotidyl transferase-mediated signal amplification strategy. Food Chem 2022;377:132072. [PMID: 35008020 DOI: 10.1016/j.foodchem.2022.132072] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
23 Mahmoudpour M, Ding S, Lyu Z, Ebrahimi G, Du D, Ezzati Nazhad Dolatabadi J, Torbati M, Lin Y. Aptamer functionalized nanomaterials for biomedical applications: Recent advances and new horizons. Nano Today 2021;39:101177. [DOI: 10.1016/j.nantod.2021.101177] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 10.0] [Reference Citation Analysis]
24 Liao L, Li X, Jiang B, Zhou W, Yuan R, Xiang Y. Cascaded and nonlinear DNA assembly amplification for sensitive and aptamer-based detection of kanamycin. Analytica Chimica Acta 2022;1204:339730. [DOI: 10.1016/j.aca.2022.339730] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]