BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sun D, Lu J, Chen D, Jiang Y, Wang Z, Qin W, Yu Y, Chen Z, Zhang Y. Label-free electrochemical detection of HepG2 tumor cells with a self-assembled DNA nanostructure-based aptasensor. Sensors and Actuators B: Chemical 2018;268:359-67. [DOI: 10.1016/j.snb.2018.04.142] [Cited by in Crossref: 43] [Cited by in F6Publishing: 27] [Article Influence: 10.8] [Reference Citation Analysis]
Number Citing Articles
1 Fu X, Peng F, Lee J, Yang Q, Zhang F, Xiong M, Kong G, Meng HM, Ke G, Zhang XB. Aptamer-Functionalized DNA Nanostructures for Biological Applications. Top Curr Chem (Cham) 2020;378:21. [PMID: 32030541 DOI: 10.1007/s41061-020-0283-y] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
2 Safarpour H, Dehghani S, Nosrati R, Zebardast N, Alibolandi M, Mokhtarzadeh A, Ramezani M. Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs). Biosens Bioelectron 2020;148:111833. [PMID: 31733465 DOI: 10.1016/j.bios.2019.111833] [Cited by in Crossref: 20] [Cited by in F6Publishing: 16] [Article Influence: 6.7] [Reference Citation Analysis]
3 Wu L, Wang Y, Zhu L, Liu Y, Wang T, Liu D, Song Y, Yang C. Aptamer-Based Liquid Biopsy. ACS Appl Bio Mater 2020;3:2743-64. [DOI: 10.1021/acsabm.9b01194] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
4 Sun D, Lu J, Zhang L, Chen Z. Aptamer-based electrochemical cytosensors for tumor cell detection in cancer diagnosis: A review. Anal Chim Acta 2019;1082:1-17. [PMID: 31472698 DOI: 10.1016/j.aca.2019.07.054] [Cited by in Crossref: 38] [Cited by in F6Publishing: 30] [Article Influence: 12.7] [Reference Citation Analysis]
5 Xu J, Jiang R, He H, Ma C, Tang Z. Recent advances on G-quadruplex for biosensing, bioimaging and cancer therapy. TrAC Trends in Analytical Chemistry 2021;139:116257. [DOI: 10.1016/j.trac.2021.116257] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 6.0] [Reference Citation Analysis]
6 Yin X, Chen B, He M, Hu B. A Multifunctional Platform for the Capture, Release, And Enumeration of Circulating Tumor Cells Based on Aptamer Binding, Nicking Endonuclease-Assisted Amplification, And Inductively Coupled Plasma Mass Spectrometry Detection. Anal Chem 2020;92:10308-15. [PMID: 32615753 DOI: 10.1021/acs.analchem.0c00276] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
7 Akbal O, Bolat G, Yaman YT, Abaci S. Folic acid conjugated Prussian blue nanoparticles: Synthesis, physicochemical characterization and targeted cancer cell sensing. Colloids Surf B Biointerfaces 2020;187:110655. [PMID: 31837885 DOI: 10.1016/j.colsurfb.2019.110655] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
8 Kweon SY, Park JP, Park CY, Park TJ. Graphene Oxide-Mediated Fluorometric Aptasensor for Okadaic Acid Detection. BioChip J. [DOI: 10.1007/s13206-022-00056-1] [Reference Citation Analysis]
9 Taghdisi SM, Danesh NM, Nameghi MA, Ramezani M, Alibolandi M, Hassanzadeh-Khayat M, Emrani AS, Abnous K. A novel electrochemical aptasensor based on nontarget-induced high accumulation of methylene blue on the surface of electrode for sensing of α-synuclein oligomer. Biosens Bioelectron 2019;123:14-8. [PMID: 30278340 DOI: 10.1016/j.bios.2018.09.081] [Cited by in Crossref: 32] [Cited by in F6Publishing: 23] [Article Influence: 8.0] [Reference Citation Analysis]
10 Tang Z, Huang J, He H, Ma C, Wang K. Contributing to liquid biopsy: Optical and electrochemical methods in cancer biomarker analysis. Coordination Chemistry Reviews 2020;415:213317. [DOI: 10.1016/j.ccr.2020.213317] [Cited by in Crossref: 12] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
11 Sun D, Lu J, Luo Z, Zhang L, Liu P, Chen Z. Competitive electrochemical platform for ultrasensitive cytosensing of liver cancer cells by using nanotetrahedra structure with rolling circle amplification. Biosens Bioelectron 2018;120:8-14. [PMID: 30142479 DOI: 10.1016/j.bios.2018.08.002] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 10.3] [Reference Citation Analysis]
12 Cui F, Zhou Z, Zhou HS. Review—Measurement and Analysis of Cancer Biomarkers Based on Electrochemical Biosensors. J Electrochem Soc 2020;167:037525. [DOI: 10.1149/2.0252003jes] [Cited by in Crossref: 39] [Cited by in F6Publishing: 2] [Article Influence: 19.5] [Reference Citation Analysis]
13 Rajwar A, Kharbanda S, Chandrasekaran AR, Gupta S, Bhatia D. Designer, Programmable 3D DNA Nanodevices to Probe Biological Systems. ACS Appl Bio Mater 2020;3:7265-77. [PMID: 35019470 DOI: 10.1021/acsabm.0c00916] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
14 Sameiyan E, Bagheri E, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. DNA origami-based aptasensors. Biosens Bioelectron 2019;143:111662. [PMID: 31491726 DOI: 10.1016/j.bios.2019.111662] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
15 Wei M, Zhang W, Yue S, Yang X. Development of the signal amplification based on Au@Pt/MIL-101(Cr) as mimetic enzyme and RecJf exonuclease-assistant target recycling. Sensors and Actuators B: Chemical 2020;312:128019. [DOI: 10.1016/j.snb.2020.128019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
16 Sun Q, Han Y, Yang Y, de la Fuente JM, Cui D, Wang X. Application of DNA nanostructures in cancer therapy. Applied Materials Today 2020;21:100861. [DOI: 10.1016/j.apmt.2020.100861] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Cai J, Shen H, Wang Y, Peng Y, Tang S, Zhu Y, Liu Q, Li B, Xie G, Feng W. A dual recognition strategy for accurate detection of CTCs based on novel branched PtAuRh trimetallic nanospheres. Biosens Bioelectron 2021;176:112893. [PMID: 33342693 DOI: 10.1016/j.bios.2020.112893] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Yaman YT, Akbal O, Abaci S. Development of clay-protein based composite nanoparticles modified single-used sensor platform for electrochemical cytosensing application. Biosensors and Bioelectronics 2019;132:230-7. [DOI: 10.1016/j.bios.2019.02.058] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
19 Zhou Y, Li F, Wu H, Chen Y, Yin H, Ai S, Wang J. Electrochemical aptasensing strategy for kanamycin detection based on target-triggered single-strand DNA adsorption on MoS2 nanosheets and enzymatic signal amplification. Sensors and Actuators B: Chemical 2019;296:126664. [DOI: 10.1016/j.snb.2019.126664] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 7.0] [Reference Citation Analysis]
20 Shahsavar K, Hosseini M, Shokri E, Xu G. New insight into G-quadruplexes; diagnosis application in cancer. Anal Biochem 2021;620:114149. [PMID: 33636157 DOI: 10.1016/j.ab.2021.114149] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Kordasht HK, Hasanzadeh M. Aptamer based recognition of cancer cells: Recent progress and challenges in bioanalysis. Talanta 2020;220:121436. [PMID: 32928438 DOI: 10.1016/j.talanta.2020.121436] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
22 Kivrak E, Ince-Yardimci A, Ilhan R, Kirmizibayrak PB, Yilmaz S, Kara P. Aptamer-based electrochemical biosensing strategy toward human non-small cell lung cancer using polyacrylonitrile/polypyrrole nanofibers. Anal Bioanal Chem 2020;412:7851-60. [PMID: 32935151 DOI: 10.1007/s00216-020-02916-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
23 Dejeu J, Van der Heyden A, Spinelli N, Defrancq E, Coche-guérente L. Recent progress in the design of G-quadruplex–based electrochemical aptasensors. Current Opinion in Electrochemistry 2021;30:100812. [DOI: 10.1016/j.coelec.2021.100812] [Reference Citation Analysis]
24 Liu Y, Chen D, Zhang W, Zhang Y. Mobile DNA tetrahedron on ultra-low adsorption lipid membrane for directional control of cell sensing. Sensors and Actuators B: Chemical 2020;307:127570. [DOI: 10.1016/j.snb.2019.127570] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
25 Kholafazad Kordasht H, Hasanzadeh M. Biomedical analysis of exosomes using biosensing methods: recent progress. Anal Methods 2020;12:2795-811. [PMID: 32930202 DOI: 10.1039/d0ay00722f] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 7.0] [Reference Citation Analysis]
26 Taghdisi Heidarian SM, Tavanaee Sani A, Danesh NM, Ramezani M, Alibolandi M, Gerayelou G, Abnous K, Taghdisi SM. A novel electrochemical approach for the ultrasensitive detection of fluoroquinolones based on a double-labelled aptamer to surpass complementary strands of aptamer lying flat. Sensors and Actuators B: Chemical 2021;334:129632. [DOI: 10.1016/j.snb.2021.129632] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
27 Huang Y, Zhang B, Yuan L, Liu L. A signal amplification strategy based on peptide self-assembly for the identification of amyloid-β oligomer. Sensors and Actuators B: Chemical 2021;335:129697. [DOI: 10.1016/j.snb.2021.129697] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 5.0] [Reference Citation Analysis]
28 Khan S, Burciu B, Filipe CDM, Li Y, Dellinger K, Didar TF. DNAzyme-Based Biosensors: Immobilization Strategies, Applications, and Future Prospective. ACS Nano 2021;15:13943-69. [PMID: 34524790 DOI: 10.1021/acsnano.1c04327] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 17.0] [Reference Citation Analysis]
29 Zhang W, Chen H, Yang M, Liao L. Electrochemical assay for detection of circulating tumor cells based on LiFePO4 as electrochemical probe. Materials Letters 2020;276:128219. [DOI: 10.1016/j.matlet.2020.128219] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
30 Cao H, Liu P, Wang L, Liu Z, Ye S, Liang G. Nonenzymatic chemiluminescence detection of circulating tumor cells in blood based on Au@luminol nanoparticles, hybridization chain reaction and magnetic isolation. Sensors and Actuators B: Chemical 2020;318:128287. [DOI: 10.1016/j.snb.2020.128287] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
31 Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, Zhang J, Wan S, Yang C, Tan W. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chem Rev 2021. [PMID: 33667075 DOI: 10.1021/acs.chemrev.0c01140] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
32 Hu M, Li Z, Guo C, Wang M, He L, Zhang Z. Hollow core-shell nanostructured MnO2/Fe2O3 embedded within amorphous carbon nanocomposite as sensitive bioplatform for detecting protein tyrosine kinase-7. Applied Surface Science 2019;489:13-24. [DOI: 10.1016/j.apsusc.2019.05.146] [Cited by in Crossref: 13] [Cited by in F6Publishing: 4] [Article Influence: 4.3] [Reference Citation Analysis]
33 Sun D, Luo Z, Lu J, Zhang S, Che T, Chen Z, Zhang L. Electrochemical dual-aptamer-based biosensor for nonenzymatic detection of cardiac troponin I by nanohybrid electrocatalysts labeling combined with DNA nanotetrahedron structure. Biosens Bioelectron 2019;134:49-56. [PMID: 30954926 DOI: 10.1016/j.bios.2019.03.049] [Cited by in Crossref: 44] [Cited by in F6Publishing: 32] [Article Influence: 14.7] [Reference Citation Analysis]
34 Mathur D, Medintz IL. The Growing Development of DNA Nanostructures for Potential Healthcare-Related Applications. Adv Healthc Mater 2019;8:e1801546. [PMID: 30843670 DOI: 10.1002/adhm.201801546] [Cited by in Crossref: 41] [Cited by in F6Publishing: 34] [Article Influence: 13.7] [Reference Citation Analysis]