BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hirst N, Hazelwood L, Jayne D, Millner P. An amperometric lactate biosensor using H2O2 reduction via a Prussian Blue impregnated poly(ethyleneimine) surface on screen printed carbon electrodes to detect anastomotic leak and sepsis. Sensors and Actuators B: Chemical 2013;186:674-80. [DOI: 10.1016/j.snb.2013.06.090] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
Number Citing Articles
1 Salazar P, Fernández I, Rodríguez MC, Hernández-creus A, González-mora JL. One-step green synthesis of silver nanoparticle-modified reduced graphene oxide nanocomposite for H2O2 sensing applications. Journal of Electroanalytical Chemistry 2019;855:113638. [DOI: 10.1016/j.jelechem.2019.113638] [Cited by in Crossref: 14] [Cited by in F6Publishing: 4] [Article Influence: 4.7] [Reference Citation Analysis]
2 Zhang C, Zhang Y, Miao Z, Ma M, Du X, Lin J, Han B, Takahashi S, Anzai J, Chen Q. Dual-function amperometric sensors based on poly(diallydimethylammoniun chloride)-functionalized reduced graphene oxide/manganese dioxide/gold nanoparticles nanocomposite. Sensors and Actuators B: Chemical 2016;222:663-73. [DOI: 10.1016/j.snb.2015.08.114] [Cited by in Crossref: 45] [Cited by in F6Publishing: 28] [Article Influence: 7.5] [Reference Citation Analysis]
3 Taleat Z, Khoshroo A, Mazloum-ardakani M. Screen-printed electrodes for biosensing: a review (2008–2013). Microchim Acta 2014;181:865-91. [DOI: 10.1007/s00604-014-1181-1] [Cited by in Crossref: 263] [Cited by in F6Publishing: 143] [Article Influence: 32.9] [Reference Citation Analysis]
4 Gu H, Hou Q, Liu Y, Cai Y, Guo Y, Xiang H, Chen S. On-line regeneration of electrochemical biosensor for in vivo repetitive measurements of striatum Cu2+ under global cerebral ischemia/reperfusion events. Biosens Bioelectron 2019;135:111-9. [PMID: 31004921 DOI: 10.1016/j.bios.2019.03.014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 4.7] [Reference Citation Analysis]
5 Hazra S, Joshi H, Ghosh BK, Ahmed A, Gibson T, Millner P, Ghosh NN. Development of a novel and efficient H 2 O 2 sensor by simple modification of a screen printed Au electrode with Ru nanoparticle loaded functionalized mesoporous SBA15. RSC Adv 2015;5:34390-7. [DOI: 10.1039/c5ra02712h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 0.9] [Reference Citation Analysis]
6 Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Fundamentals, Applications, and Future Directions of Bioelectrocatalysis. Chem Rev 2020;120:12903-93. [DOI: 10.1021/acs.chemrev.0c00472] [Cited by in Crossref: 34] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
7 Pribil MM, Laptev GU, Karyakina EE, Karyakin AA. Noninvasive hypoxia monitor based on gene-free engineering of lactate oxidase for analysis of undiluted sweat. Anal Chem 2014;86:5215-9. [PMID: 24837858 DOI: 10.1021/ac501547u] [Cited by in Crossref: 35] [Cited by in F6Publishing: 28] [Article Influence: 4.4] [Reference Citation Analysis]
8 Zaryanov NV, Nikitina VN, Karpova EV, Karyakina EE, Karyakin AA. Nonenzymatic Sensor for Lactate Detection in Human Sweat. Anal Chem 2017;89:11198-202. [PMID: 29065687 DOI: 10.1021/acs.analchem.7b03662] [Cited by in Crossref: 46] [Cited by in F6Publishing: 29] [Article Influence: 9.2] [Reference Citation Analysis]
9 Onor M, Gufoni S, Lomonaco T, Ghimenti S, Salvo P, Sorrentino F, Bramanti E. Potentiometric sensor for non invasive lactate determination in human sweat. Anal Chim Acta 2017;989:80-7. [PMID: 28915945 DOI: 10.1016/j.aca.2017.07.050] [Cited by in Crossref: 27] [Cited by in F6Publishing: 18] [Article Influence: 5.4] [Reference Citation Analysis]