BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Liu S, Jiang X, Waterhouse GI, Zhang Z, Yu L. A novel Z-scheme NH2-MIL-125(Ti)/Ti3C2 QDs/ZnIn2S4 photocatalyst with fast interfacial electron transfer properties for visible light-driven antibiotic degradation and hydrogen evolution. Separation and Purification Technology 2022;294:121094. [DOI: 10.1016/j.seppur.2022.121094] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Chatterjee A, Wang L, Van Der Voort P. Metal-organic frameworks in photocatalytic Z-scheme heterojunctions: an emerging technology. Chem Commun (Camb) 2023;59:3627-54. [PMID: 36861263 DOI: 10.1039/d2cc05819g] [Reference Citation Analysis]
2 Chen Y, Liu H, Hu L, Shen Y, Qiu L, Zhu L, Shi Q, Xu X, Li P, Duo S. Highly efficient visible-light photocatalytic performance of MOFs-derived TiO2 via heterojunction construction and oxygen vacancy engineering. Chemical Physics Letters 2023. [DOI: 10.1016/j.cplett.2023.140365] [Reference Citation Analysis]
3 Shen M, Zhang G, Liu J, Liu Y, Zhai J, Zhang H, Yu H. Visible-light driven photodegradation of xanthate in a continuous fixed-bed photoreactor: Experimental Study and Modeling. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141833] [Reference Citation Analysis]
4 Hu H, Jin J, Xu M, Xu C, Cheng Y, Ji W, Ding Z, Shao M, Wan Y. Novel Z-scheme Bi3O4Br/NH2-MIL-125(Ti) composite for efficient photocatalytic degradation of tetracycline. Optical Materials 2023;135:113262. [DOI: 10.1016/j.optmat.2022.113262] [Reference Citation Analysis]
5 Wang Y, Feng S, Ma C, Zhou Y, Ye Z, Dai X, Cao X. Synthesis of Z-type heterojunction bifunctional composites with Mn-doped CdS nanoparticles supported on NH2-MIL-125(Ti) for hydrogen evolution and antibiotic degradation under visible light. Optical Materials 2023;135:113087. [DOI: 10.1016/j.optmat.2022.113087] [Reference Citation Analysis]
6 Long C, Dong X, Huang J. Latest Progress on Photocatalytic H2 Production by Water Splitting and H2 Production Coupled with Selective Oxidation of Organics over ZnIn2S4-Based Photocatalysts. Energy Fuels 2022. [DOI: 10.1021/acs.energyfuels.2c03588] [Reference Citation Analysis]
7 Wang W, Wang D, Song H, Hao D, Xu B, Ren J, Wang M, Dai C, Wang Y, Liu W. Size Effect of Gold Nanoparticles in Bimetallic ZIF Catalysts for Enhanced Photo-redox Reactions. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.140909] [Reference Citation Analysis]
8 Dai M, He Z, Cao W, Zhang J, Chen W, Jin Q, Que W, Wang S. Rational construction of S-scheme BN/MXene/ZnIn2S4 heterojunction with interface engineering for efficient photocatalytic hydrogen production and chlorophenols degradation. Separation and Purification Technology 2022. [DOI: 10.1016/j.seppur.2022.123004] [Reference Citation Analysis]
9 Wang J, Chen C, Zhao Z, Cheng C, Tang Z, Du Z, Wang Y, Pan L. Construction of N-doped g-C3N4/NH2-MIL-125(Ti) S-scheme heterojunction for enhanced photocatalytic degradation of organic pollutants: DFT calculation and mechanism study. Journal of Alloys and Compounds 2022;922:166288. [DOI: 10.1016/j.jallcom.2022.166288] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Sun H, Xiao Z, Zhao Z, Huang Y, Zhai S, An Q. Facile synthesis of CaWO4 nanoparticles incorporated on porous carbons with improved photocatalytic degradation of tetracycline. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022;651:129790. [DOI: 10.1016/j.colsurfa.2022.129790] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
11 Saravanakumar K, Yun K, Maheskumar V, Yea Y, Jagan G, Min Park C. Construction of novel In2S3/Ti3C2 MXene quantum dots/SmFeO3 Z-scheme heterojunctions for efficient photocatalytic removal of sulfamethoxazole and 4-chlorophenol: Degradation pathways and mechanism insights. Chemical Engineering Journal 2022. [DOI: 10.1016/j.cej.2022.138933] [Reference Citation Analysis]
12 Liu D, Gu W, Zhou L, Lei J, Wang L, Zhang J, Liu Y. From biochar to functions: Lignin induced formation of Fe3C in carbon/Fe composites for efficient adsorption of tetracycline from wastewater. Separation and Purification Technology 2022. [DOI: 10.1016/j.seppur.2022.122217] [Reference Citation Analysis]
13 Qiu J, Dai D, Zhang L, Xia G, Yao J. Oxygen vacancy-rich Bi2MoO6 anchored on cuboid metal-organic frameworks for photocatalytic elimination of Cr(VI)/2-nitrophenol mixed pollutants. Separation and Purification Technology 2022. [DOI: 10.1016/j.seppur.2022.121990] [Reference Citation Analysis]
14 Wang S, Qi Y, Zheng C, Fan S, Feng Y. Facile synthesis of porous 3D honeycomb-like ZnIn2S4 microspheres with improved photocatalytic activity for hydrogen evolution. New J Chem 2022;46:20866-20873. [DOI: 10.1039/d2nj04397a] [Reference Citation Analysis]
15 Long M, Li D, Li H, Ma X, Zhao Q, Wen Q, Song F. Synergetic effect of photocatalysis and peroxymonosulfate activated by MFe 2 O 4 (M = Co, Mn, or Zn) for enhanced photocatalytic activity under visible light irradiation. RSC Adv 2022;12:20946-55. [DOI: 10.1039/d2ra03558h] [Reference Citation Analysis]
16 Sun B, Fan D, Chen X, Li Z, Zhou W, Du Y. Heteroatom-induced domain electrostatic potential difference in ZnIn 2 S 4 nanosheets for efficient charge separation and boosted photocatalytic overall water splitting. Mater Chem Front . [DOI: 10.1039/d2qm00314g] [Reference Citation Analysis]