BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ren J, Lv S, Wang S, Bao M, Zhang X, Gao Y, Liu Y, Zhang Z, Zeng L, Ke J. Construction of efficient g-C3N4/NH2-UiO-66 (Zr) heterojunction photocatalysts for wastewater purification. Separation and Purification Technology 2021;274:118973. [DOI: 10.1016/j.seppur.2021.118973] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Zheng S, Du H, Yang L, Tan M, Li N, Fu Y, Hao D, Wang Q. PDINH bridged NH(2)-UiO-66(Zr) Z-scheme heterojunction for promoted photocatalytic Cr(VI) reduction and antibacterial activity. J Hazard Mater 2023;447:130849. [PMID: 36701978 DOI: 10.1016/j.jhazmat.2023.130849] [Reference Citation Analysis]
2 Chen M, Li S, Wen L, Xu Z, Li H, Ding L, Cheng Y. Exploration of double Z-type ternary composite long-afterglow/graphitic carbon nitride@metal–organic framework for photocatalytic degradation of methylene blue. Journal of Colloid and Interface Science 2023;629:409-421. [DOI: 10.1016/j.jcis.2022.08.189] [Reference Citation Analysis]
3 Djellabi R, Su P, Elimian EA, Poliukhova V, Nouacer S, Abdelhafeez IA, Abderrahim N, Aboagye D, Andhalkar VV, Nabgan W, Rtimi S, Contreras S. Advances in photocatalytic reduction of hexavalent chromium: From fundamental concepts to materials design and technology challenges. Journal of Water Process Engineering 2022;50:103301. [DOI: 10.1016/j.jwpe.2022.103301] [Reference Citation Analysis]
4 Wang S, Gao K, Cui Y, Li S, Zhang H, Zhang B, Wu J, Hou H, Zang S. Enhancement of visible-light-driven oxidative amine coupling under aerobic and anaerobic conditions by photocatalyst with spatial separation of photoinduced charge carriers. Nano Res 2022. [DOI: 10.1007/s12274-022-5144-2] [Reference Citation Analysis]
5 Kouser S, Hezam A, Ara Khanum S. Final Rational Design and Engineering of Efficient Metal Organic Framework for Visible Light-driven Photocatalytic carbon-di-oxide Reduction. Inorganica Chimica Acta 2022. [DOI: 10.1016/j.ica.2022.121287] [Reference Citation Analysis]
6 Wang J, Chen C, Zhao Z, Cheng C, Tang Z, Du Z, Wang Y, Pan L. Construction of N-doped g-C3N4/NH2-MIL-125(Ti) S-scheme heterojunction for enhanced photocatalytic degradation of organic pollutants: DFT calculation and mechanism study. Journal of Alloys and Compounds 2022;922:166288. [DOI: 10.1016/j.jallcom.2022.166288] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Li H, Li D, Long M, Bai X, Wen Q, Song F. Solvothermal synthesis of MIL-53Fe@g-C3N4 for peroxymonosulfate activation towards enhanced photocatalytic performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022. [DOI: 10.1016/j.colsurfa.2022.130646] [Reference Citation Analysis]
8 Zhang R, Cai L, Zhao C, Yu J, Yang Z, Chen Z, Jiang J, Hu Z. Photocatalytic degradation of organic pollutants by 3D flower-like g-C3N4/Ag3PO4/Bi2O2CO3 and its effect on the growth of lettuce seedlings. Diamond and Related Materials 2022;129:109362. [DOI: 10.1016/j.diamond.2022.109362] [Reference Citation Analysis]
9 Chen L, Tang Q, Wu S, Zhang L, Feng L, Wang Y, Xie Y, Li Y, Zou J, Luo S. Covalent coupling promoting charge transport of CdSeTe/UiO-66 for boosting photocatalytic CO2 reduction. Chinese Chemical Letters 2022. [DOI: 10.1016/j.cclet.2022.107903] [Reference Citation Analysis]
10 Wu Y, Lu K, Pei F, Yan Y, Feng S, Hao Q, Xia M, Lei W. Construction of g-C3N4/Au/NH2-UiO-66 Z-scheme heterojunction for label-free photoelectrochemical recognition of D-penicillamine. Talanta 2022;248:123617. [DOI: 10.1016/j.talanta.2022.123617] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Ren J, Meng Y, Zhang X, Gao Y, Liu L, Zhou X, Zhang Z, Zeng L, Ke J. Self-assembled perylene diimide modified NH2-UiO-66 (Zr) construct n-n heterojunction catalysts for enhanced Cr (VI) photocatalytic reduction. Separation and Purification Technology 2022;296:121423. [DOI: 10.1016/j.seppur.2022.121423] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
12 Zhang J, Ma Y, Zhang W, Huang X, Wang X, Huang Y, Zhang P. CuBi2O4/calcined ZnAlBi-LDHs heterojunction: Simultaneous removal of Cr(VI) and tetracycline through effective adsorption and photocatalytic redox. Journal of Cleaner Production 2022;365:132810. [DOI: 10.1016/j.jclepro.2022.132810] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Huang Z, Yu H, Wang L, Liu X, Ren S, Liu J. Ferrocene-modified Uio-66-NH2 hybrids with g-C3N4 as enhanced photocatalysts for degradation of bisphenol A under visible light. J Hazard Mater 2022;436:129052. [PMID: 35580498 DOI: 10.1016/j.jhazmat.2022.129052] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Gao R. Mechanism and Application of Metal-Organic Framework in Wastewater Treatment. HSET 2022;6:25-32. [DOI: 10.54097/hset.v6i.930] [Reference Citation Analysis]
15 Jafarzadeh M. Recent Progress in the Development of MOF-Based Photocatalysts for the Photoreduction of Cr(VI). ACS Appl Mater Interfaces 2022;14:24993-5024. [PMID: 35604855 DOI: 10.1021/acsami.2c03946] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Shi Z, Chen Z, Zhang Y, Wang X, Lu T, Wang Q, Zhan Z, Zhang P. COF TzDa/Ag/AgBr Z-scheme heterojunction photocatalyst for efficient visible light driven elimination of antibiotics tetracycline and heavy metal ion Cr(VI). Separation and Purification Technology 2022;288:120717. [DOI: 10.1016/j.seppur.2022.120717] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
17 Guo Z, Li N, Zuo S, Qiang C, Zhan W, Li Z, Ma J. Construction of a novel metal–organic framework adenine-UiO-66 piezocatalyst for efficient diclofenac removal. Separation and Purification Technology 2022;289:120743. [DOI: 10.1016/j.seppur.2022.120743] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Najafidoust A, Abdollahi B, Asl EA, Karimi R. Synthesis and characterization of novel M@ZnO/UiO-66 (M = Ni, Pt, Pd and mixed Pt&Pd) as an efficient photocatalyst under solar light. Journal of Molecular Structure 2022;1256:132580. [DOI: 10.1016/j.molstruc.2022.132580] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Long X, Feng C, Yang S, Ding D, Feng J, Liu M, Chen Y, Tan J, Peng X, Shi J, Chen R. Oxygen doped graphitic carbon nitride with regulatable local electron density and band structure for improved photocatalytic degradation of bisphenol A. Chemical Engineering Journal 2022;435:134835. [DOI: 10.1016/j.cej.2022.134835] [Cited by in Crossref: 14] [Cited by in F6Publishing: 18] [Article Influence: 14.0] [Reference Citation Analysis]
20 Belousov AS, Fukina DG, Koryagin AV. Metal–organic framework‐based heterojunction photocatalysts for organic pollutant degradation: design, construction, and performances. J of Chemical Tech & Biotech. [DOI: 10.1002/jctb.7091] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
21 Peñas-garzón M, Sampaio MJ, Wang YL, Bedia J, Rodriguez JJ, Belver C, Silva CG, Faria JL. Solar photocatalytic degradation of parabens using UiO-66-NH2. Separation and Purification Technology 2022;286:120467. [DOI: 10.1016/j.seppur.2022.120467] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 11.0] [Reference Citation Analysis]
22 Zhang Y, Guo J, Wu C, Huan W, Chen L, Li B. Enhanced removal of Cr(VI) by cation functionalized bamboo hydrochar. Bioresource Technology 2022;347:126703. [DOI: 10.1016/j.biortech.2022.126703] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
23 Zhang J, Chen Z, Guo R, Shan D, Zhao Y, Linghu X, Shu Y, Wang B. Synthesis of nano-sized Ag3PW12O40/ZnO heterojunction as a photocatalyst for degradation of organic pollutants under simulated sunlight. Arabian Journal of Chemistry 2022;15:103659. [DOI: 10.1016/j.arabjc.2021.103659] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
24 Du Q, Rao R, Bi F, Yang Y, Zhang W, Yang Y, Liu N, Zhang X. Preparation of modified zirconium-based metal-organic frameworks (Zr-MOFs) supported metals and recent application in environment: A review and perspectives. Surfaces and Interfaces 2022;28:101647. [DOI: 10.1016/j.surfin.2021.101647] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 25.0] [Reference Citation Analysis]
25 Yang Z, Chen Y, Xu L, Liu C, Jiang Z. A novel Z-scheme Bi4O5I2/NiFe2O4 heterojunction photocatalyst with reliable recyclability for Rhodamine B degradation. Advanced Powder Technology 2021;32:4522-32. [DOI: 10.1016/j.apt.2021.10.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
26 Raaja Rajeshwari M, Kokilavani S, Sudheer Khan S. Recent developments in architecturing the g-C3N4 based nanostructured photocatalysts: Synthesis, modifications and applications in water treatment. Chemosphere 2021;:132735. [PMID: 34756947 DOI: 10.1016/j.chemosphere.2021.132735] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]