BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Havasi A, Dong Z. Autophagy and Tubular Cell Death in the Kidney. Semin Nephrol 2016;36:174-88. [PMID: 27339383 DOI: 10.1016/j.semnephrol.2016.03.005] [Cited by in Crossref: 51] [Cited by in F6Publishing: 52] [Article Influence: 12.8] [Reference Citation Analysis]
Number Citing Articles
1 Jin C, Miao X, Zhong Y, Han J, Liu Q, Zhu J, Xia X, Peng X. The renoprotective effect of diosgenin on aristolochic acid I-induced renal injury in rats: impact on apoptosis, mitochondrial dynamics and autophagy. Food Funct 2020;11:7456-67. [PMID: 32789347 DOI: 10.1039/d0fo00401d] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
2 Lynch MR, Tran MT, Ralto KM, Zsengeller ZK, Raman V, Bhasin SS, Sun N, Chen X, Brown D, Rovira II, Taguchi K, Brooks CR, Stillman IE, Bhasin MK, Finkel T, Parikh SM. TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance. JCI Insight 2019;5:126749. [PMID: 30870143 DOI: 10.1172/jci.insight.126749] [Cited by in Crossref: 13] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
3 Bao J, Shi Y, Tao M, Liu N, Zhuang S, Yuan W. Pharmacological inhibition of autophagy by 3-MA attenuates hyperuricemic nephropathy. Clin Sci (Lond) 2018;132:2299-322. [PMID: 30293967 DOI: 10.1042/CS20180563] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
4 Bhatia D, Choi ME. Autophagy in kidney disease: Advances and therapeutic potential. Prog Mol Biol Transl Sci 2020;172:107-33. [PMID: 32620239 DOI: 10.1016/bs.pmbts.2020.01.008] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
5 Pontrelli P, Oranger A, Barozzino M, Divella C, Conserva F, Fiore MG, Rossi R, Papale M, Castellano G, Simone S, Laviola L, Giorgino F, Piscitelli D, Gallone A, Gesualdo L. Deregulation of autophagy under hyperglycemic conditions is dependent on increased lysine 63 ubiquitination: a candidate mechanism in the progression of diabetic nephropathy. J Mol Med (Berl) 2018;96:645-59. [PMID: 29806072 DOI: 10.1007/s00109-018-1656-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
6 Qin N, Cai T, Ke Q, Yuan Q, Luo J, Mao X, Jiang L, Cao H, Wen P, Zen K, Zhou Y, Yang J. UCP2-dependent improvement of mitochondrial dynamics protects against acute kidney injury. J Pathol 2019;247:392-405. [PMID: 30426490 DOI: 10.1002/path.5198] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
7 Liu J, Livingston MJ, Dong G, Tang C, Su Y, Wu G, Yin XM, Dong Z. Histone deacetylase inhibitors protect against cisplatin-induced acute kidney injury by activating autophagy in proximal tubular cells. Cell Death Dis 2018;9:322. [PMID: 29476062 DOI: 10.1038/s41419-018-0374-7] [Cited by in Crossref: 30] [Cited by in F6Publishing: 35] [Article Influence: 7.5] [Reference Citation Analysis]
8 Taha MM, Shahy EM, Mahdy-Abdallah H, Ibrahim KS, El Tahlawy EM. Evaluation of the effect of serum cystatin-C and ACE I/D and ACE G2350A polymorphisms on kidney function among hypertensive sewage workers. Environ Sci Pollut Res Int 2021;28:1619-26. [PMID: 32851527 DOI: 10.1007/s11356-020-10579-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Wu Y, Xun Y, Zhang J, Hu H, Qin B, Wang T, Wang S, Li C, Lu Y. Resveratrol Attenuates Oxalate-Induced Renal Oxidative Injury and Calcium Oxalate Crystal Deposition by Regulating TFEB-Induced Autophagy Pathway. Front Cell Dev Biol 2021;9:638759. [PMID: 33718378 DOI: 10.3389/fcell.2021.638759] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 El Seedy GM, El-Shafey ES, Elsherbiny ES. Fortification of biscuit with sidr leaf and flaxseed mitigates immunosuppression and nephrotoxicity induced by cyclosporine A. J Food Biochem 2021;45:e13655. [PMID: 33616983 DOI: 10.1111/jfbc.13655] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Cohen A, Ioannidis K, Ehrlich A, Regenbaum S, Cohen M, Ayyash M, Tikva SS, Nahmias Y. Mechanism and reversal of drug-induced nephrotoxicity on a chip. Sci Transl Med 2021;13:eabd6299. [PMID: 33627489 DOI: 10.1126/scitranslmed.abd6299] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
12 Zhao XC, Livingston MJ, Liang XL, Dong Z. Cell Apoptosis and Autophagy in Renal Fibrosis. Adv Exp Med Biol 2019;1165:557-84. [PMID: 31399985 DOI: 10.1007/978-981-13-8871-2_28] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
13 Xing JJ, Hou JG, Ma ZN, Wang Z, Ren S, Wang YP, Liu WC, Chen C, Li W. Ginsenoside Rb3 provides protective effects against cisplatin-induced nephrotoxicity via regulation of AMPK-/mTOR-mediated autophagy and inhibition of apoptosis in vitro and in vivo. Cell Prolif 2019;52:e12627. [PMID: 31094028 DOI: 10.1111/cpr.12627] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
14 Rega LR, De Leo E, Nieri D, Luciani A. Defective Cystinosin, Aberrant Autophagy−Endolysosome Pathways, and Storage Disease: Towards Assembling the Puzzle. Cells 2022;11:326. [DOI: 10.3390/cells11030326] [Reference Citation Analysis]
15 Vieira AM, Silvestre OF, Silva BF, Ferreira CJ, Lopes I, Gomes AC, Espiña B, Sárria MP. pH-sensitive nanoliposomes for passive and CXCR-4-mediated marine yessotoxin delivery for cancer therapy. Nanomedicine (Lond) 2022. [PMID: 35481356 DOI: 10.2217/nnm-2022-0010] [Reference Citation Analysis]
16 Wei J, Wu H, Zhang H, Li F, Chen S, Hou B, Shi Y, Zhao L, Duan H. Anthocyanins inhibit high glucose-induced renal tubular cell apoptosis caused by oxidative stress in db/db mice. Int J Mol Med 2018;41:1608-18. [PMID: 29328429 DOI: 10.3892/ijmm.2018.3378] [Cited by in Crossref: 11] [Cited by in F6Publishing: 18] [Article Influence: 2.8] [Reference Citation Analysis]
17 Tang C, Han H, Yan M, Zhu S, Liu J, Liu Z, He L, Tan J, Liu Y, Liu H, Sun L, Duan S, Peng Y, Liu F, Yin XM, Zhang Z, Dong Z. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy. 2018;14:880-897. [PMID: 29172924 DOI: 10.1080/15548627.2017.1405880] [Cited by in Crossref: 89] [Cited by in F6Publishing: 95] [Article Influence: 22.3] [Reference Citation Analysis]
18 Kim YA, Kim HJ, Gwon MG, Gu H, An HJ, Bae S, Leem J, Jung HJ, Park KK. Inhibitory Effects of STAT3 Transcription Factor by Synthetic Decoy ODNs on Autophagy in Renal Fibrosis. Biomedicines 2021;9:331. [PMID: 33806080 DOI: 10.3390/biomedicines9040331] [Reference Citation Analysis]
19 Park JS, Choi HI, Kim DH, Kim CS, Bae EH, Ma SK, Kim SW. Alpha-lipoic acid attenuates p-cresyl sulfate-induced renal tubular injury through suppression of apoptosis and autophagy in human proximal tubular epithelial cells. Biomed Pharmacother 2019;112:108679. [PMID: 30798133 DOI: 10.1016/j.biopha.2019.108679] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
20 Bradley JR, Wang J, Bardsley V, Broecker V, Thiru S, Pober JS, Al-Lamki RS. Signaling through tumor necrosis receptor 2 induces stem cell marker in CD133+ regenerating tubular epithelial cells in acute cell-mediated rejection of human renal allografts. Am J Transplant 2020;20:2380-91. [PMID: 32167668 DOI: 10.1111/ajt.15846] [Reference Citation Analysis]
21 Staiano L, De Matteis MA. Phosphoinositides in the kidney. J Lipid Res 2019;60:287-98. [PMID: 30314999 DOI: 10.1194/jlr.R089946] [Reference Citation Analysis]
22 Sokolowski DJ, Faykoo-Martinez M, Erdman L, Hou H, Chan C, Zhu H, Holmes MM, Goldenberg A, Wilson MD. Single-cell mapper (scMappR): using scRNA-seq to infer the cell-type specificities of differentially expressed genes. NAR Genom Bioinform 2021;3:lqab011. [PMID: 33655208 DOI: 10.1093/nargab/lqab011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Cui J, Bai X, Chen X. Autophagy and Glomerular Diseases. Adv Exp Med Biol 2020;1207:481-6. [PMID: 32671770 DOI: 10.1007/978-981-15-4272-5_35] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
24 Kaushal GP, Chandrashekar K, Juncos LA, Shah SV. Autophagy Function and Regulation in Kidney Disease. Biomolecules 2020;10:E100. [PMID: 31936109 DOI: 10.3390/biom10010100] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
25 Li P, Shi M, Maique J, Shaffer J, Yan S, Moe OW, Hu MC. Beclin 1/Bcl-2 complex-dependent autophagy activity modulates renal susceptibility to ischemia-reperfusion injury and mediates renoprotection by Klotho. Am J Physiol Renal Physiol 2020;318:F772-92. [PMID: 31984794 DOI: 10.1152/ajprenal.00504.2019] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
26 Boonprasert K, Vesey DA, Gobe GC, Ruenweerayut R, Johnson DW, Na-Bangchang K, Satarug S. Is renal tubular cadmium toxicity clinically relevant? Clin Kidney J 2018;11:681-7. [PMID: 30288264 DOI: 10.1093/ckj/sfx153] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
27 Zhang R, Zhou X, Shen X, Xie T, Xu C, Zou Z, Dong J, Liao L. Different sulfonylureas induce the apoptosis of proximal tubular epithelial cell differently via closing KATP channel. Mol Med 2018;24:47. [PMID: 30180807 DOI: 10.1186/s10020-018-0042-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
28 Chen Z, Wang J, He J, Fan H, Hou S, Lv Q. Myoglobin Mediates Autophagy of NRK-52E in Rat Renal Tubular Epithelial Cells Via the Pink1/Parkin Signaling Pathway. Med Sci Monit 2020;26:e923045. [PMID: 32697768 DOI: 10.12659/MSM.923045] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
29 De Matteis MA, Staiano L, Emma F, Devuyst O. The 5-phosphatase OCRL in Lowe syndrome and Dent disease 2. Nat Rev Nephrol 2017;13:455-70. [PMID: 28669993 DOI: 10.1038/nrneph.2017.83] [Cited by in Crossref: 53] [Cited by in F6Publishing: 45] [Article Influence: 10.6] [Reference Citation Analysis]
30 Lee D, Kang KB, Kim HW, Park JS, Hwang GS, Kang KS, Choi S, Yamabe N, Kim KH. Unique Triterpenoid of Jujube Root Protects Cisplatin-induced Damage in Kidney Epithelial LLC-PK1 Cells via Autophagy Regulation. Nutrients 2020;12:E677. [PMID: 32131519 DOI: 10.3390/nu12030677] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
31 Guo C, Dong G, Liang X, Dong Z. Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications. Nat Rev Nephrol 2019;15:220-39. [PMID: 30651611 DOI: 10.1038/s41581-018-0103-6] [Cited by in Crossref: 38] [Cited by in F6Publishing: 36] [Article Influence: 12.7] [Reference Citation Analysis]
32 Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia-reperfusion injury. Acta Pharm Sin B 2020;10:1866-79. [PMID: 33163341 DOI: 10.1016/j.apsb.2020.03.004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 29] [Article Influence: 15.0] [Reference Citation Analysis]
33 Poluzzi C, Nastase MV, Zeng-Brouwers J, Roedig H, Hsieh LT, Michaelis JB, Buhl EM, Rezende F, Manavski Y, Bleich A, Boor P, Brandes RP, Pfeilschifter J, Stelzer EHK, Münch C, Dikic I, Brandts C, Iozzo RV, Wygrecka M, Schaefer L. Biglycan evokes autophagy in macrophages via a novel CD44/Toll-like receptor 4 signaling axis in ischemia/reperfusion injury. Kidney Int 2019;95:540-62. [PMID: 30712922 DOI: 10.1016/j.kint.2018.10.037] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 13.0] [Reference Citation Analysis]
34 Gu X, Raman A, Susztak K. Going from acute to chronic kidney injury with FoxO3. J Clin Invest 2019;129:2192-4. [PMID: 31063992 DOI: 10.1172/JCI128985] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Gonzalez CD, Carro Negueruela MP, Nicora Santamarina C, Resnik R, Vaccaro MI. Autophagy Dysregulation in Diabetic Kidney Disease: From Pathophysiology to Pharmacological Interventions. Cells 2021;10:2497. [PMID: 34572148 DOI: 10.3390/cells10092497] [Reference Citation Analysis]
36 Hou X, Huang M, Zeng X, Zhang Y, Sun A, Wu Q, Zhu L, Zhao H, Liao Y. The Role of TRPC6 in Renal Ischemia/Reperfusion and Cellular Hypoxia/Reoxygenation Injuries. Front Mol Biosci 2021;8:698975. [PMID: 34307458 DOI: 10.3389/fmolb.2021.698975] [Reference Citation Analysis]
37 Li JR, Ou YC, Wu CC, Wang JD, Lin SY, Wang YY, Chen WY, Liao SL, Chen CJ. Endoplasmic reticulum stress and autophagy contributed to cadmium nephrotoxicity in HK-2 cells and Sprague-Dawley rats. Food Chem Toxicol 2020;146:111828. [PMID: 33127495 DOI: 10.1016/j.fct.2020.111828] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
38 Yang D, Livingston MJ, Liu Z, Dong G, Zhang M, Chen JK, Dong Z. Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci 2018;75:669-88. [PMID: 28871310 DOI: 10.1007/s00018-017-2639-1] [Cited by in Crossref: 75] [Cited by in F6Publishing: 78] [Article Influence: 15.0] [Reference Citation Analysis]
39 Packer M. Interplay of adenosine monophosphate-activated protein kinase/sirtuin-1 activation and sodium influx inhibition mediates the renal benefits of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: A novel conceptual framework. Diabetes Obes Metab 2020;22:734-42. [PMID: 31916329 DOI: 10.1111/dom.13961] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 11.0] [Reference Citation Analysis]
40 Liu Z, Huang W, Chen Y, Du Z, Zhu F, Wang T, Jiang B. Ischemic postconditioning ameliorates acute kidney injury induced by limb ischemia/reperfusion via transforming TLR4 and NF-κB signaling in rats. J Orthop Surg Res 2021;16:416. [PMID: 34210334 DOI: 10.1186/s13018-021-02565-5] [Reference Citation Analysis]
41 Tian X, Xie J, Chen X, Dong N, Feng J, Gao Y, Tian F, Zhang W, Qiu Y, Niu R, Ren X, Yan X. Deregulation of autophagy is involved in nephrotoxicity of arsenite and fluoride exposure during gestation to puberty in rat offspring. Arch Toxicol 2020;94:749-60. [PMID: 31844926 DOI: 10.1007/s00204-019-02651-y] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
42 Duan X, Kong Z, Mai X, Lan Y, Liu Y, Yang Z, Zhao Z, Deng T, Zeng T, Cai C, Li S, Zhong W, Wu W, Zeng G. Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney. Redox Biol 2018;16:414-25. [PMID: 29653411 DOI: 10.1016/j.redox.2018.03.019] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 6.5] [Reference Citation Analysis]
43 Satarug S, Vesey DA, Gobe GC. Current health risk assessment practice for dietary cadmium: Data from different countries. Food Chem Toxicol 2017;106:430-45. [PMID: 28602857 DOI: 10.1016/j.fct.2017.06.013] [Cited by in Crossref: 78] [Cited by in F6Publishing: 72] [Article Influence: 15.6] [Reference Citation Analysis]
44 Liu Y, Xu H, An M. mTORC1 regulates apoptosis and cell proliferation in pterygium via targeting autophagy and FGFR3. Sci Rep 2017;7:7339. [PMID: 28779179 DOI: 10.1038/s41598-017-07844-y] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
45 Shi J, Duan J, Gong H, Pang Y, Wang L, Yan Y. Exosomes from miR-20b-3p-overexpressing stromal cells ameliorate calcium oxalate deposition in rat kidney. J Cell Mol Med 2019;23:7268-78. [PMID: 31489770 DOI: 10.1111/jcmm.14555] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
46 Peng Y, Yang C, Shi X, Li L, Dong H, Liu C, Fang Z, Wang Z, Ming S, Liu M, Xie B, Gao X, Sun Y. Sirt3 suppresses calcium oxalate-induced renal tubular epithelial cell injury via modification of FoxO3a-mediated autophagy. Cell Death Dis 2019;10:34. [PMID: 30674870 DOI: 10.1038/s41419-018-1169-6] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
47 Priante G, Gianesello L, Ceol M, Del Prete D, Anglani F. Cell Death in the Kidney. Int J Mol Sci 2019;20:E3598. [PMID: 31340541 DOI: 10.3390/ijms20143598] [Cited by in Crossref: 29] [Cited by in F6Publishing: 28] [Article Influence: 9.7] [Reference Citation Analysis]
48 Katuri A, Bryant JL, Patel D, Patel V, Andhavarapu S, Asemu G, Davis H, Makar TK. HIVAN associated tubular pathology with reference to ER stress, mitochondrial changes, and autophagy. Exp Mol Pathol 2019;106:139-48. [PMID: 30605635 DOI: 10.1016/j.yexmp.2018.12.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Hou X, Xiao H, Zhang Y, Zeng X, Huang M, Chen X, Birnbaumer L, Liao Y. Transient receptor potential channel 6 knockdown prevents apoptosis of renal tubular epithelial cells upon oxidative stress via autophagy activation. Cell Death Dis 2018;9:1015. [PMID: 30282964 DOI: 10.1038/s41419-018-1052-5] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 5.5] [Reference Citation Analysis]
50 Madhivanan K, Ramadesikan S, Hsieh WC, Aguilar MC, Hanna CB, Bacallao RL, Aguilar RC. Lowe syndrome patient cells display mTOR- and RhoGTPase-dependent phenotypes alleviated by rapamycin and statins. Hum Mol Genet 2020;29:1700-15. [PMID: 32391547 DOI: 10.1093/hmg/ddaa086] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
51 Wu M, Ma Y, Chen X, Liang N, Qu S, Chen H. Hyperuricemia causes kidney damage by promoting autophagy and NLRP3-mediated inflammation in rats with urate oxidase deficiency. Dis Model Mech 2021;14:dmm048041. [PMID: 33648977 DOI: 10.1242/dmm.048041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
52 Hou J, Rao M, Zheng W, Fan J, Law BYK. Advances on Cell Autophagy and Its Potential Regulatory Factors in Renal Ischemia-Reperfusion Injury. DNA Cell Biol 2019;38:895-904. [PMID: 31347925 DOI: 10.1089/dna.2019.4767] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
53 Cui J, Bai X, Chen X. Autophagy and Acute Kidney Injury. Adv Exp Med Biol 2020;1207:469-80. [PMID: 32671769 DOI: 10.1007/978-981-15-4272-5_34] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
54 Fang L, Zhang Y, Wang Q, Zang Y, Li Z, Duan Z, Ren J, Xu Z. A polysaccharide from Huaier ameliorates cisplatin nephrotoxicity by decreasing oxidative stress and apoptosis via PI3K/AKT signaling. Int J Biol Macromol 2019;139:932-43. [PMID: 31377293 DOI: 10.1016/j.ijbiomac.2019.07.219] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 4.7] [Reference Citation Analysis]