BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Saya L, Malik V, Gautam D, Gambhir G, Balendra, Singh WR, Hooda S. A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater. Sci Total Environ 2021;:152529. [PMID: 34953830 DOI: 10.1016/j.scitotenv.2021.152529] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Ma Y, Wang R, Gao C, Han R. Carbon nanotube-loaded copper-nickel ferrite activated persulfate system for adsorption and degradation of oxytetracycline hydrochloride. J Colloid Interface Sci 2023;640:761-74. [PMID: 36905888 DOI: 10.1016/j.jcis.2023.03.001] [Reference Citation Analysis]
2 Xie K, Xu S, Xu K, Hao W, Wang J, Wei Z. BiOCl Heterojunction photocatalyst: Construction, photocatalytic performance, and applications. Chemosphere 2023;317:137823. [PMID: 36649899 DOI: 10.1016/j.chemosphere.2023.137823] [Reference Citation Analysis]
3 Hassanzadeh-Afruzi F, Esmailzadeh F, Heidari G, Maleki A, Nazarzadeh Zare E. Arabic Gum-Grafted-Hydrolyzed Polyacrylonitrile@ZnFe(2)O(4) as a Magnetic Adsorbent for Remediation of Levofloxacin Antibiotic from Aqueous Solutions. ACS Omega 2023;8:6337-48. [PMID: 36844579 DOI: 10.1021/acsomega.2c06555] [Reference Citation Analysis]
4 Guo J, Ding C, Gan W, Chen P, Lu Y, Li J, Chen R, Zhang M, Sun Z. High-activity black phosphorus quantum dots/Au/TiO2 ternary heterojunction for efficient levofloxacin removal: Pathways, toxicity assessment, mechanism and DFT calculations. Separation and Purification Technology 2023;307:122838. [DOI: 10.1016/j.seppur.2022.122838] [Reference Citation Analysis]
5 Khamayseh MM, Kidak R. Equilibrium, kinetics, and thermodynamics study on the biosorption of reactive levofloxacin antibiotic on Pithophora macroalgae in aqueous solution. Environ Monit Assess 2023;195:301. [PMID: 36645500 DOI: 10.1007/s10661-023-10925-3] [Reference Citation Analysis]
6 Zhang G, Wang Y, Chen M, Xu J, Wang L. ZIF-67-derived carbon@Co3S4/CoSO4/MnO polyhedron to activate peroxymonosulfate for degrading levofloxacin: Synergistic effect and mechanism. Chemical Engineering Journal 2023;451:138976. [DOI: 10.1016/j.cej.2022.138976] [Reference Citation Analysis]
7 Xu Z, Jiang J, Wang M, Wang J, Tang Y, Li S, Liu J. Enhanced levofloxacin degradation by hierarchical porous Co3O4 with rich oxygen vacancies activating peroxymonosulfate: Performance and mechanism. Separation and Purification Technology 2023;304:122055. [DOI: 10.1016/j.seppur.2022.122055] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Li X, Chen T, Qiu Y, Zhu Z, Zhang H, Yin D. Magnetic dual Z-scheme g-C3N4/BiVO4/CuFe2O4 heterojunction as an efficient visible-light-driven peroxymonosulfate activator for levofloxacin degradation. Chemical Engineering Journal 2023;452:139659. [DOI: 10.1016/j.cej.2022.139659] [Reference Citation Analysis]
9 Draz ME, El Wasseef D, El Enany N, Wahba MEK. Green approach for tracking the photofate of ciprofloxacin and levofloxacin in different matrices adopting synchronous fluorescence spectroscopy: a kinetic study. R Soc Open Sci 2023;10:221086. [PMID: 36686550 DOI: 10.1098/rsos.221086] [Reference Citation Analysis]
10 Liu K, Wang L, Fu T, Zhang H, Lu C, Tong Z, Yang Y, Peng Y. Oxygen-functionalized Ti3C2 MXene/exfoliated montmorillonite supported S-scheme BiOBr/Bi2MoO6 heterostructures for efficient photocatalytic quinolone antibiotics degradation. Chemical Engineering Journal 2023. [DOI: 10.1016/j.cej.2023.141271] [Reference Citation Analysis]
11 Lin S, Zhao Z, Lv J, Guan L, Du H, Liang S. Designing a novel metal-organic framework@covalent organic framework composite for the selective removal of fluoroquinolones: Adsorption behaviors and theoretical investigation. Applied Surface Science 2023;609:155433. [DOI: 10.1016/j.apsusc.2022.155433] [Reference Citation Analysis]
12 Hu L, Wang Z, Shi Y, Liu C, Hou Y, Bi J, Wu L. Coordination activation enhanced photocatalytic performance for levofloxacin degradation over defect-rich WO3 nanosheets. Journal of Environmental Chemical Engineering 2022;10:108738. [DOI: 10.1016/j.jece.2022.108738] [Reference Citation Analysis]
13 Liu R, Shi Y, Lin L, Wang Z, Liu C, Bi J, Hou Y, Lin S, Wu L. Surface Lewis acid sites and oxygen vacancies of Bi2WO6 synergistically promoted photocatalytic degradation of levofloxacin. Applied Surface Science 2022;605:154822. [DOI: 10.1016/j.apsusc.2022.154822] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Liu C, Xie Y, Jiao Y, Du Y, Zheng Q, Sun Y. Visible-light-driven nanoscale zero-valent iron loaded rGO/g-C3N4 for fluoroquinolone antibiotics degradation in water. Front Environ Sci 2022;10. [DOI: 10.3389/fenvs.2022.1065770] [Reference Citation Analysis]
15 Hai NTT, Tu VV, Long PH, Hien DT, Huong NTT, Quynh PH, Phuong NTT, Viet NM, Thang PQ. Improvement of Ciprofloxacin Antibiotic Photocatalytic Degradation and Adsorption Ability from Aqueous Solution by Bismuth Oxyiodide.. [DOI: 10.21203/rs.3.rs-1887037/v1] [Reference Citation Analysis]
16 Castilla-caballero D, Sadak O, Martínez-díaz J, Martínez-castro V, Colina-márquez J, Machuca-martínez F, Hernandez-ramirez A, Vazquez-rodriguez S, Gunasekaran S. Solid-state photocatalysis for plastics abatement: A review. Materials Science in Semiconductor Processing 2022;149:106890. [DOI: 10.1016/j.mssp.2022.106890] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Ben Ayed A, Akrout I, Albert Q, Greff S, Simmler C, Armengaud J, Kielbasa M, Turbé-doan A, Chaduli D, Navarro D, Bertrand E, Faulds CB, Chamkha M, Maalej A, Zouari-mechichi H, Sciara G, Mechichi T, Record E. Biotransformation of the Fluoroquinolone, Levofloxacin, by the White-Rot Fungus Coriolopsis gallica. JoF 2022;8:965. [DOI: 10.3390/jof8090965] [Reference Citation Analysis]
18 Zhang X, Fu L, Cui G. Two Zn(II)-based coordination polymers as dual-responsive luminescent sensors for the detection of Cr2O72− ions, levofloxacin/sulfamethoxazole. Inorganic Chemistry Communications 2022;143:109761. [DOI: 10.1016/j.inoche.2022.109761] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Liu J, Jiang J, Wang M, Kang J, Zhang J, Liu S, Tang Y, Li S. Peroxymonosulfate activation by cobalt particles embedded into biochar for levofloxacin degradation: Efficiency, stability, and mechanism. Separation and Purification Technology 2022;294:121082. [DOI: 10.1016/j.seppur.2022.121082] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
20 Zhao Y, Guo H, Liu J, Xia Q, Liu J, Liang X, Liu E, Fan J. Effective photodegradation of rhodamine B and levofloxacin over CQDs modified BiOCl and BiOBr composite: Mechanism and toxicity assessment. J Colloid Interface Sci 2022;627:180-93. [PMID: 35842968 DOI: 10.1016/j.jcis.2022.07.046] [Reference Citation Analysis]
21 Mohammadi SA, Asgharnejad L, Najafi H, Asasian-kolur N, Sharifian S. Investigation of Adsorptive and Catalytic Performance of a Novel Nano-sized Amine-Modified Metal Organic Framework toward Levofloxacin. Journal of Environmental Chemical Engineering 2022. [DOI: 10.1016/j.jece.2022.107990] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
22 Wang L, Liu Y, Chen G, Zhang M, Yang X, Chen R, Cheng Y. Bismuth Oxychloride Nanomaterials Fighting for Human Health: From Photodegradation to Biomedical Applications. Crystals 2022;12:491. [DOI: 10.3390/cryst12040491] [Reference Citation Analysis]