BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hou ZS, Wen HS, Li JF, He F, Li Y, Qi X. Environmental hypoxia causes growth retardation, osteoclast differentiation and calcium dyshomeostasis in juvenile rainbow trout (Oncorhynchus mykiss). Sci Total Environ 2020;705:135272. [PMID: 31841926 DOI: 10.1016/j.scitotenv.2019.135272] [Cited by in Crossref: 11] [Cited by in F6Publishing: 5] [Article Influence: 3.7] [Reference Citation Analysis]
Number Citing Articles
1 Zhang Y, Ding J, Liu C, Luo S, Gao X, Wu Y, Wang J, Wang X, Wu X, Shen W, Zhu J. Genetics Responses to Hypoxia and Reoxygenation Stress in Larimichthys crocea Revealed via Transcriptome Analysis and Weighted Gene Co-Expression Network. Animals (Basel) 2021;11:3021. [PMID: 34827754 DOI: 10.3390/ani11113021] [Reference Citation Analysis]
2 Aksakal E, Ekinci D. Effects of hypoxia and hyperoxia on growth parameters and transcription levels of growth, immune system and stress related genes in rainbow trout. Comp Biochem Physiol A Mol Integr Physiol 2021;262:111060. [PMID: 34455084 DOI: 10.1016/j.cbpa.2021.111060] [Reference Citation Analysis]
3 Hou ZS, Xin YR, Zeng C, Zhao HK, Tian Y, Li JF, Wen HS. GHRH-SST-GH-IGF axis regulates crosstalk between growth and immunity in rainbow trout (Oncorhynchus mykiss) infected with Vibrio anguillarum. Fish Shellfish Immunol 2020;106:887-97. [PMID: 32866610 DOI: 10.1016/j.fsi.2020.08.037] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
4 Martínez G, Peña E, Martínez R, Camarillo S, Burggren W, Álvarez A. Survival, Growth, and Development in the Early Stages of the Tropical Gar Atractosteus tropicus: Developmental Critical Windows and the Influence of Temperature, Salinity, and Oxygen Availability. Fishes 2021;6:5. [DOI: 10.3390/fishes6010005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
5 Yang Y, Wang Z, Wang J, Lyu F, Xu K, Mu W. Histopathological, hematological, and biochemical changes in high-latitude fish Phoxinus lagowskii exposed to hypoxia. Fish Physiol Biochem 2021;47:919-38. [PMID: 33860915 DOI: 10.1007/s10695-021-00947-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Silva GME, Campos DF, Brasil JAT, Tremblay M, Mendiondo EM, Ghiglieno F. Advances in Technological Research for Online and In Situ Water Quality Monitoring—A Review. Sustainability 2022;14:5059. [DOI: 10.3390/su14095059] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Calduch-giner J, Holhorea PG, Ferrer MÁ, Naya-català F, Rosell-moll E, Vega García C, Prunet P, Espmark ÅM, Leguen I, Kolarevic J, Vega A, Kerneis T, Goardon L, Afonso JM, Pérez-sánchez J. Revising the Impact and Prospects of Activity and Ventilation Rate Bio-Loggers for Tracking Welfare and Fish-Environment Interactions in Salmonids and Mediterranean Farmed Fish. Front Mar Sci 2022;9:854888. [DOI: 10.3389/fmars.2022.854888] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Qiang J, He J, Tao YF, Bao JW, Zhu JH, Xu P. Hypoxia-induced miR-92a regulates p53 signaling pathway and apoptosis by targeting calcium-sensing receptor in genetically improved farmed tilapia (Oreochromis niloticus). PLoS One 2020;15:e0238897. [PMID: 33180826 DOI: 10.1371/journal.pone.0238897] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
9 Kuang L, Shi P, Hua C, Chen B, Zhu H. An Enhanced Extreme Learning Machine for Dissolved Oxygen Prediction in Wireless Sensor Networks. IEEE Access 2020;8:198730-9. [DOI: 10.1109/access.2020.3033455] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
10 Wang X, Xiao S, Zhang R, Liu L, Zhu H. Physiological changes and transcriptional modulation of HIF-αs in Siberian sturgeon in response to hypoxia. Aquaculture 2021;545:737219. [DOI: 10.1016/j.aquaculture.2021.737219] [Reference Citation Analysis]
11 Valotaire C, Borel F, Leterrier C, Guilloteau LA, Colson V. Early chronic hypoxia does not impact rainbow trout behaviour later in life. Aquaculture Reports 2020;18:100454. [DOI: 10.1016/j.aqrep.2020.100454] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Han B, Meng Y, Tian H, Li C, Li Y, Gongbao C, Fan W, Ma R. Effects of Acute Hypoxic Stress on Physiological and Hepatic Metabolic Responses of Triploid Rainbow Trout (Oncorhynchus mykiss). Front Physiol 2022;13:921709. [DOI: 10.3389/fphys.2022.921709] [Reference Citation Analysis]
13 McNicholl C, Oberhaensli F, Taylor A, Holmerin I, Swarzenski PW, Metian M. Deoxygenation reduces growth rates and increases assimilation of essential trace metals in gilthead seabream (Sparus aurata). Environ Pollut 2021;288:117786. [PMID: 34284207 DOI: 10.1016/j.envpol.2021.117786] [Reference Citation Analysis]
14 Yang Y, Dong Z, Chen X, Wang Z, Zhang D, Liang L, Mu W. Molecular characterization and expression analysis of hypoxia-inducible factor-1α, factor-2α, and factor-3α and physiological response to hypoxia exposure in Amur minnow (Phoxinus lagowskii). Aquacult Int. [DOI: 10.1007/s10499-021-00826-y] [Reference Citation Analysis]