BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Patange A, Boehm D, Giltrap M, Lu P, Cullen P, Bourke P. Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Science of The Total Environment 2018;631-632:298-307. [DOI: 10.1016/j.scitotenv.2018.02.269] [Cited by in Crossref: 33] [Cited by in F6Publishing: 17] [Article Influence: 8.3] [Reference Citation Analysis]
Number Citing Articles
1 Patange A, O'Byrne C, Boehm D, Cullen PJ, Keener K, Bourke P. The Effect of Atmospheric Cold Plasma on Bacterial Stress Responses and Virulence Using Listeria monocytogenes Knockout Mutants. Front Microbiol 2019;10:2841. [PMID: 31921026 DOI: 10.3389/fmicb.2019.02841] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
2 Gururani P, Bhatnagar P, Bisht B, Kumar V, Joshi NC, Tomar MS, Pathak B. Cold plasma technology: advanced and sustainable approach for wastewater treatment. Environ Sci Pollut Res Int 2021. [PMID: 34617236 DOI: 10.1007/s11356-021-16741-x] [Reference Citation Analysis]
3 Wang X, Pang L, Yang S, Zou L, Zhang Y, Zhao T. Plasma-induced destruction of Candida albicans cell wall components: A reactive molecular dynamics simulation. Biochem Biophys Res Commun 2021;576:53-8. [PMID: 34481235 DOI: 10.1016/j.bbrc.2021.08.093] [Reference Citation Analysis]
4 Kulawik P, Kumar Tiwari B. Recent advancements in the application of non-thermal plasma technology for the seafood industry. Crit Rev Food Sci Nutr 2019;59:3199-210. [PMID: 30277810 DOI: 10.1080/10408398.2018.1510827] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
5 Liao X, Cullen PJ, Liu D, Muhammad AI, Chen S, Ye X, Wang J, Ding T. Combating Staphylococcus aureus and its methicillin resistance gene (mecA) with cold plasma. Sci Total Environ 2018;645:1287-95. [PMID: 30248853 DOI: 10.1016/j.scitotenv.2018.07.190] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
6 Huang M, Zhuang H, Zhao J, Wang J, Yan W, Zhang J. Differences in cellular damage induced by dielectric barrier discharge plasma between Salmonella Typhimurium and Staphylococcus aureus. Bioelectrochemistry 2020;132:107445. [DOI: 10.1016/j.bioelechem.2019.107445] [Cited by in Crossref: 21] [Cited by in F6Publishing: 9] [Article Influence: 10.5] [Reference Citation Analysis]
7 El Kadri H, Costello KM, Thomas P, Wantock T, Sandison G, Harle T, Fabris AL, Gutierrez-Merino J, Velliou EG. The antimicrobial efficacy of remote cold atmospheric plasma effluent against single and mixed bacterial biofilms of varying age. Food Res Int 2021;141:110126. [PMID: 33641993 DOI: 10.1016/j.foodres.2021.110126] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
8 Sarangapani C, Ziuzina D, Behan P, Boehm D, Gilmore BF, Cullen PJ, Bourke P. Degradation kinetics of cold plasma-treated antibiotics and their antimicrobial activity. Sci Rep 2019;9:3955. [PMID: 30850645 DOI: 10.1038/s41598-019-40352-9] [Cited by in Crossref: 21] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
9 Massima Mouele ES, Tijani JO, Masikini M, Fatoba OO, Eze CP, Onwordi CT, Zar Myint MT, Kyaw HH, Al-sabahi J, Al-abri M, Dobretsov S, Laatikainen K, Petrik LF. Spectroscopic Measurements of Dissolved O3, H2O2 and OH Radicals in Double Cylindrical Dielectric Barrier Discharge Technology: Treatment of Methylene Blue Dye Simulated Wastewater. Plasma 2020;3:59-91. [DOI: 10.3390/plasma3020007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
10 Mostafaie A, Cardoso DN, Kamali M, Loureiro S. A Scientometric Study on Industrial Effluent and Sludge Toxicity. Toxics 2021;9:176. [PMID: 34437494 DOI: 10.3390/toxics9080176] [Reference Citation Analysis]
11 Marshall H, Meneely JP, Quinn B, Zhao Y, Bourke P, Gilmore BF, Zhang G, Elliott CT. Novel decontamination approaches and their potential application for post-harvest aflatoxin control. Trends in Food Science & Technology 2020;106:489-96. [DOI: 10.1016/j.tifs.2020.11.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Volpin F, Badeti U, Wang C, Jiang J, Vogel J, Freguia S, Fam D, Cho J, Phuntsho S, Shon HK. Urine Treatment on the International Space Station: Current Practice and Novel Approaches. Membranes (Basel) 2020;10:E327. [PMID: 33147844 DOI: 10.3390/membranes10110327] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Olatunde OO, Benjakul S, Vongkamjan K. Dielectric barrier discharge cold atmospheric plasma: Bacterial inactivation mechanism. J Food Saf 2019;39. [DOI: 10.1111/jfs.12705] [Cited by in Crossref: 18] [Article Influence: 6.0] [Reference Citation Analysis]
14 Huang M, Zhuang H, Wang J, Yan W, Zhao J, Zhang J. Inactivation Kinetics of Salmonella typhimurium and Staphylococcus aureus in Different Media by Dielectric Barrier Discharge Non-Thermal Plasma. Applied Sciences 2018;8:2087. [DOI: 10.3390/app8112087] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
15 Zhang Y, Wei J, Yuan Y, Chen H, Dai L, Wang X, Yue T. Bactericidal effect of cold plasma on microbiota of commercial fish balls. Innovative Food Science & Emerging Technologies 2019;52:394-405. [DOI: 10.1016/j.ifset.2019.01.019] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 4.3] [Reference Citation Analysis]
16 Costello KM, Smet C, Gutierrez-Merino J, Bussemaker M, Van Impe JF, Velliou EG. The impact of food model system structure on the inactivation of Listeria innocua by cold atmospheric plasma and nisin combined treatments. Int J Food Microbiol 2021;337:108948. [PMID: 33197682 DOI: 10.1016/j.ijfoodmicro.2020.108948] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Shemer A, Daniel R, Kassem R, Geffen Y, Galili E. Cold sub-atmospheric and atmospheric pressure plasma for the treatment of Trichophyton rubrum onychomycosis: An in-vitro study. Dermatol Ther 2020;33:e14084. [PMID: 32729232 DOI: 10.1111/dth.14084] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Olatunde OO, Benjakul S, Vongkamjan K. High voltage cold atmospheric plasma: Antibacterial properties and its effect on quality of Asian sea bass slices. Innovative Food Science & Emerging Technologies 2019;52:305-12. [DOI: 10.1016/j.ifset.2019.01.011] [Cited by in Crossref: 24] [Cited by in F6Publishing: 11] [Article Influence: 8.0] [Reference Citation Analysis]
19 Qi M, Zhao R, Liu Q, Yan H, Zhang Y, Wang S, Yuan Y. Antibacterial activity and mechanism of high voltage electrostatic field (HVEF) against Staphylococcus aureus in medium plates and food systems. Food Control 2021;120:107566. [DOI: 10.1016/j.foodcont.2020.107566] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
20 Julák J, Scholtz V, Vaňková E. Medically important biofilms and non-thermal plasma. World J Microbiol Biotechnol 2018;34:178. [PMID: 30456518 DOI: 10.1007/s11274-018-2560-2] [Cited by in Crossref: 15] [Cited by in F6Publishing: 8] [Article Influence: 3.8] [Reference Citation Analysis]