BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gomes I, Simões M, Simões L. The effects of sodium hypochlorite against selected drinking water-isolated bacteria in planktonic and sessile states. Science of The Total Environment 2016;565:40-8. [DOI: 10.1016/j.scitotenv.2016.04.136] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 5.2] [Reference Citation Analysis]
Number Citing Articles
1 Qi J, Wang H, Cai L, Wang H, Xu X, Zhou G. Aeromonas salmonicida isolates: Attachment ability and sensitivity to four disinfectants. Food Control 2018;88:40-6. [DOI: 10.1016/j.foodcont.2017.12.027] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
2 Gomes I, Lemos M, Mathieu L, Simões M, Simões L. The action of chemical and mechanical stresses on single and dual species biofilm removal of drinking water bacteria. Science of The Total Environment 2018;631-632:987-93. [DOI: 10.1016/j.scitotenv.2018.03.042] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
3 Guo L, Sun Y, Zhu Y, Wang B, Xu L, Huang M, Li Y, Sun J. The antibacterial mechanism of ultrasound in combination with sodium hypochlorite in the control of Escherichia coli. Food Res Int 2020;129:108887. [PMID: 32036906 DOI: 10.1016/j.foodres.2019.108887] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 3.3] [Reference Citation Analysis]
4 Zhang H, Tian Y, Kang M, Chen C, Song Y, Li H. Effects of chlorination/chlorine dioxide disinfection on biofilm bacterial community and corrosion process in a reclaimed water distribution system. Chemosphere 2019;215:62-73. [DOI: 10.1016/j.chemosphere.2018.09.181] [Cited by in Crossref: 25] [Cited by in F6Publishing: 18] [Article Influence: 8.3] [Reference Citation Analysis]
5 Zhao L, Liu YW, Li N, Fan XY, Li X. Response of bacterial regrowth, abundant and rare bacteria and potential pathogens to secondary chlorination in secondary water supply system. Sci Total Environ 2020;719:137499. [PMID: 32120107 DOI: 10.1016/j.scitotenv.2020.137499] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 4.5] [Reference Citation Analysis]
6 da Cruz Nizer WS, Inkovskiy V, Overhage J. Surviving Reactive Chlorine Stress: Responses of Gram-Negative Bacteria to Hypochlorous Acid. Microorganisms 2020;8:E1220. [PMID: 32796669 DOI: 10.3390/microorganisms8081220] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 7.0] [Reference Citation Analysis]
7 Fernandes S, Gomes IB, Simões M. Antibiofilm activity of glycolic acid and glyoxal and their diffusion–reaction interactions with biofilm components. Food Research International 2022;152:110921. [DOI: 10.1016/j.foodres.2021.110921] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Gomes IB, Simões LC, Simões M. Influence of surface copper content on Stenotrophomonas maltophilia biofilm control using chlorine and mechanical stress. Biofouling 2020;36:1-13. [DOI: 10.1080/08927014.2019.1708334] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
9 Salazar Mercado SA, Maldonado Bayona HA. Evaluation of the cytotoxic potential of sodium hypochlorite using meristematic root cells of Lens culinaris Med. Science of The Total Environment 2020;701:134992. [DOI: 10.1016/j.scitotenv.2019.134992] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
10 Filion-Côté S, Melaine F, Kirk AG, Tabrizian M. Monitoring of bacterial film formation and its breakdown with an angular-based surface plasmon resonance biosensor. Analyst 2017;142:2386-94. [PMID: 28555681 DOI: 10.1039/c7an00068e] [Cited by in Crossref: 8] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Tranchida G, Di Franco F, Virtanen S, Santamaria M. Effect of NaClO disinfection/cleaning on passive films on AISI 316L. Corrosion Science 2020;165:108415. [DOI: 10.1016/j.corsci.2019.108415] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Owoseni M, Okoh A. Evidence of emerging challenge of chlorine tolerance of Enterococcus species recovered from wastewater treatment plants. International Biodeterioration & Biodegradation 2017;120:216-23. [DOI: 10.1016/j.ibiod.2017.02.016] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]
13 Flores-Treviño S, Bocanegra-Ibarias P, Camacho-Ortiz A, Morfín-Otero R, Salazar-Sesatty HA, Garza-González E. Stenotrophomonas maltophilia biofilm: its role in infectious diseases. Expert Rev Anti Infect Ther 2019;17:877-93. [PMID: 31658838 DOI: 10.1080/14787210.2019.1685875] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
14 Gomes I, Querido M, Teixeira J, Pereira C, Simões L, Simões M. Prolonged exposure of Stenotrophomonas maltophilia biofilms to trace levels of clofibric acid alters antimicrobial tolerance and virulence. Chemosphere 2019;235:327-35. [DOI: 10.1016/j.chemosphere.2019.06.184] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
15 Brooke JS. Advances in the Microbiology of Stenotrophomonas maltophilia. Clin Microbiol Rev 2021;34:e0003019. [PMID: 34043457 DOI: 10.1128/CMR.00030-19] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Luque-agudo V, Romero-guzmán D, Fernández-grajera M, González-martín ML, Gallardo-moreno AM. Aging of Solvent-Casting PLA-Mg Hydrophobic Films: Impact on Bacterial Adhesion and Viability. Coatings 2019;9:814. [DOI: 10.3390/coatings9120814] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Luo L, Wu Y, Yu T, Wang Y, Chen G, Tong X, Bai Y, Xu C, Wang H, Ikuno N, Hu H. Evaluating method and potential risks of chlorine-resistant bacteria (CRB): A review. Water Research 2021;188:116474. [DOI: 10.1016/j.watres.2020.116474] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 17.0] [Reference Citation Analysis]
18 Owoseni M, Okoh A. Assessment of chlorine tolerance profile of Citrobacter species recovered from wastewater treatment plants in Eastern Cape, South Africa. Environ Monit Assess 2017;189. [DOI: 10.1007/s10661-017-5900-z] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
19 Zhu Z, Shan L, Hu F, Li Z, Zhong D, Yuan Y, Zhang J. Biofilm formation potential and chlorine resistance of typical bacteria isolated from drinking water distribution systems. RSC Adv 2020;10:31295-304. [DOI: 10.1039/d0ra04985a] [Cited by in Crossref: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Gomes IB, Simões LC, Simões M. The role of surface copper content on biofilm formation by drinking water bacteria. RSC Adv 2019;9:32184-96. [DOI: 10.1039/c9ra05880j] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
21 Shekhawat SS, Kulshreshtha NM, Gupta AB. Investigation of chlorine tolerance profile of dominant gram negative bacteria recovered from secondary treated wastewater in Jaipur, India. Journal of Environmental Management 2020;255:109827. [DOI: 10.1016/j.jenvman.2019.109827] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
22 Hierro-Oliva M, Gallardo-Moreno AM, González-Martín ML. Surface Characterisation of Human Serum Albumin Layers on Activated Ti6Al4V. Materials (Basel) 2021;14:7416. [PMID: 34885570 DOI: 10.3390/ma14237416] [Reference Citation Analysis]
23 Gomes IB, Simões LC, Simões M. The effects of emerging environmental contaminants on Stenotrophomonas maltophilia isolated from drinking water in planktonic and sessile states. Sci Total Environ 2018;643:1348-56. [PMID: 30189551 DOI: 10.1016/j.scitotenv.2018.06.263] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
24 Oliveira IM, Gomes IB, Simões LC, Simões M. Chlorinated cyanurates and potassium salt of peroxymonosulphate as antimicrobial and antibiofilm agents for drinking water disinfection. Sci Total Environ 2021;811:152355. [PMID: 34921876 DOI: 10.1016/j.scitotenv.2021.152355] [Reference Citation Analysis]
25 Fish KE, Boxall JB. Biofilm Microbiome (Re)Growth Dynamics in Drinking Water Distribution Systems Are Impacted by Chlorine Concentration. Front Microbiol 2018;9:2519. [PMID: 30459730 DOI: 10.3389/fmicb.2018.02519] [Cited by in Crossref: 28] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
26 Kim T, Cho J, Cha D, Kim MS, Park EJ, Lee HJ, Lee C. Cupric ion in combination with hydrogen peroxide and hydroxylamine applied to inactivation of different microorganisms. J Hazard Mater 2020;400:123305. [PMID: 32947709 DOI: 10.1016/j.jhazmat.2020.123305] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Fernández-calderón M, Romero-guzmán D, Ferrández-montero A, Pérez-giraldo C, González-carrasco JL, Lieblich M, Benavente R, Ferrari B, González-martín M, Gallardo-moreno AM. Impact of PLA/Mg films degradation on surface physical properties and biofilm survival. Colloids and Surfaces B: Biointerfaces 2020;185:110617. [DOI: 10.1016/j.colsurfb.2019.110617] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
28 Lu N, Sun S, Chu F, Wang M, Zhao Q, Shi J, Jia R. Identification and inactivation of Gordonia, a new chlorine-resistant bacterium isolated from a drinking water distribution system. J Water Health 2020;18:995-1008. [PMID: 33328370 DOI: 10.2166/wh.2020.143] [Reference Citation Analysis]
29 Tao MT, Zhang J, Luo ZZ, Zhou NN, Song CC. Dynamic and quantitative characterization of antagonism within disinfectant mixtures by a modified area-concentration ratio method. Ecotoxicol Environ Saf 2021;221:112455. [PMID: 34174735 DOI: 10.1016/j.ecoenv.2021.112455] [Reference Citation Analysis]
30 Dhakal J, Sharma CS, Nannapaneni R, McDANIEL CD, Kim T, Kiess A. Effect of Chlorine-Induced Sublethal Oxidative Stress on the Biofilm-Forming Ability of Salmonella at Different Temperatures, Nutrient Conditions, and Substrates. J Food Prot 2019;82:78-92. [PMID: 30586327 DOI: 10.4315/0362-028X.JFP-18-119] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
31 Li Y, Tan L, Guo L, Zhang P, Malakar PK, Ahmed F, Liu H, Wang JJ, Zhao Y. Acidic electrolyzed water more effectively breaks down mature Vibrio parahaemolyticus biofilm than DNase I. Food Control 2020;117:107312. [DOI: 10.1016/j.foodcont.2020.107312] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]