BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Palma JM, Mateos RM, López-Jaramillo J, Rodríguez-Ruiz M, González-Gordo S, Lechuga-Sancho AM, Corpas FJ. Plant catalases as NO and H2S targets. Redox Biol 2020;34:101525. [PMID: 32505768 DOI: 10.1016/j.redox.2020.101525] [Cited by in Crossref: 41] [Cited by in F6Publishing: 27] [Article Influence: 20.5] [Reference Citation Analysis]
Number Citing Articles
1 Sharafi Y, Jannatizadeh A, Fard JR, Aghdam MS. Melatonin treatment delays senescence and improves antioxidant potential of sweet cherry fruits during cold storage. Scientia Horticulturae 2021;288:110304. [DOI: 10.1016/j.scienta.2021.110304] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
2 Jbir Koubaa R, Ayadi M, Saidi MN, Charfeddine S, Gargouri-bouzid R, Nouri-ellouz O. Comprehensive Genome-Wide Analysis of the Catalase Enzyme Toolbox in Potato (Solanum tuberosum L.). Potato Res . [DOI: 10.1007/s11540-022-09554-z] [Reference Citation Analysis]
3 Mukarram M, Khan MMA, Corpas FJ. Silicon nanoparticles elicit an increase in lemongrass (Cymbopogon flexuosus (Steud.) Wats) agronomic parameters with a higher essential oil yield. J Hazard Mater 2021;412:125254. [PMID: 33550131 DOI: 10.1016/j.jhazmat.2021.125254] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 7.0] [Reference Citation Analysis]
4 Iqbal N, Umar S, Khan NA, Corpas FJ. Nitric Oxide and Hydrogen Sulfide Coordinately Reduce Glucose Sensitivity and Decrease Oxidative Stress via Ascorbate-Glutathione Cycle in Heat-Stressed Wheat (Triticum aestivum L.) Plants. Antioxidants (Basel) 2021;10:108. [PMID: 33466569 DOI: 10.3390/antiox10010108] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 9.0] [Reference Citation Analysis]
5 Sánchez-McSweeney A, González-Gordo S, Aranda-Sicilia MN, Rodríguez-Rosales MP, Venema K, Palma JM, Corpas FJ. Loss of function of the chloroplast membrane K+/H+ antiporters AtKEA1 and AtKEA2 alters the ROS and NO metabolism but promotes drought stress resilience. Plant Physiol Biochem 2021;160:106-19. [PMID: 33485149 DOI: 10.1016/j.plaphy.2021.01.010] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Rather BA, Mir IR, Sehar Z, Anjum NA, Masood A, Khan NA. The outcomes of the functional interplay of nitric oxide and hydrogen sulfide in metal stress tolerance in plants. Plant Physiology and Biochemistry 2020;155:523-34. [DOI: 10.1016/j.plaphy.2020.08.005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
7 Ocvirk D, Špoljarević M, Kristić M, Hancock JT, Teklić T, Lisjak M. The effects of seed priming with sodium hydrosulphide on drought tolerance of sunflower ( Helianthus annuus L.) in germination and early growth. Ann Appl Biol 2021;178:400-13. [DOI: 10.1111/aab.12658] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
8 Liu H, Xue S. Interplay between hydrogen sulfide and other signaling molecules in the regulation of guard cell signaling and abiotic/biotic stress response. Plant Commun 2021;2:100179. [PMID: 34027393 DOI: 10.1016/j.xplc.2021.100179] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Liu Y, Weaver CM, Sen Y, Eitzen G, Simmonds AJ, Linchieh L, Lurette O, Hebert-Chatelain E, Rachubinski RA, Di Cara F. The Nitric Oxide Donor, S-Nitrosoglutathione, Rescues Peroxisome Number and Activity Defects in PEX1G843D Mild Zellweger Syndrome Fibroblasts. Front Cell Dev Biol 2021;9:714710. [PMID: 34434934 DOI: 10.3389/fcell.2021.714710] [Reference Citation Analysis]
10 Almagro L, Calderón AA, Pedreño MA, Ferrer MA. Differential Response of Phenol Metabolism Associated with Antioxidative Network in Elicited Grapevine Suspension Cultured Cells under Saline Conditions. Antioxidants 2022;11:388. [DOI: 10.3390/antiox11020388] [Reference Citation Analysis]
11 León J. Protein Tyrosine Nitration in Plant Nitric Oxide Signaling. Front Plant Sci 2022;13:859374. [DOI: 10.3389/fpls.2022.859374] [Reference Citation Analysis]
12 Freitas IS, Trennepohl BI, Acioly TMS, Conceição VJ, Mello SC, Dourado Neto D, Kluge RA, Azevedo RA. Exogenous Application of L-Arginine Improves Protein Content and Increases Yield of Pereskia aculeata Mill. Grown in Soilless Media Container. Horticulturae 2022;8:142. [DOI: 10.3390/horticulturae8020142] [Reference Citation Analysis]
13 Zhao J, Sun Q, Quentin M, Ling J, Abad P, Zhang X, Li Y, Yang Y, Favery B, Mao Z, Xie B. A Meloidogyne incognita C-type lectin effector targets plant catalases to promote parasitism. New Phytol 2021;232:2124-37. [PMID: 34449897 DOI: 10.1111/nph.17690] [Reference Citation Analysis]
14 Li J, Shi C, Wang X, Liu C, Ding X, Ma P, Wang X, Jia H. Hydrogen sulfide regulates the activity of antioxidant enzymes through persulfidation and improves the resistance of tomato seedling to Copper Oxide nanoparticles (CuO NPs)-induced oxidative stress. Plant Physiology and Biochemistry 2020;156:257-66. [DOI: 10.1016/j.plaphy.2020.09.020] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
15 Lu S, Guo Y, Qi L, Hu Q, Yu L. Highly sensitive and label-free detection of catalase by a H2O2-responsive liquid crystal sensing platform. Sensors and Actuators B: Chemical 2021;344:130279. [DOI: 10.1016/j.snb.2021.130279] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
16 Zhang Y, Cheng P, Wang Y, Li Y, Su J, Chen Z, Yu X, Shen W. Genetic elucidation of hydrogen signaling in plant osmotic tolerance and stomatal closure via hydrogen sulfide. Free Radical Biology and Medicine 2020;161:1-14. [DOI: 10.1016/j.freeradbiomed.2020.09.021] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
17 González-Gordo S, Rodríguez-Ruiz M, Paradela A, Ramos-Fernández A, Corpas FJ, Palma JM. Mitochondrial protein expression during sweet pepper (Capsicum annuum L.) fruit ripening: iTRAQ-based proteomic analysis and role of cytochrome c oxidase. J Plant Physiol 2022;274:153734. [PMID: 35667195 DOI: 10.1016/j.jplph.2022.153734] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Singer SD, Subedi U, Lehmann M, Burton Hughes K, Feyissa BA, Hannoufa A, Shan B, Chen G, Kader K, Ortega Polo R, Schwinghamer T, Kaur Dhariwal G, Acharya S. Identification of Differential Drought Response Mechanisms in Medicago sativa subsp. sativa and falcata through Comparative Assessments at the Physiological, Biochemical, and Transcriptional Levels. Plants (Basel) 2021;10:2107. [PMID: 34685916 DOI: 10.3390/plants10102107] [Reference Citation Analysis]
19 Bright JP, Karunanadham K, Maheshwari HS, Karuppiah EAA, Thankappan S, Nataraj R, Pandian D, Ameen F, Poczai P, Sayyed RZ. Seed-Borne Probiotic Yeasts Foster Plant Growth and Elicit Health Protection in Black Gram (Vigna mungo L.). Sustainability 2022;14:4618. [DOI: 10.3390/su14084618] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 González-Domínguez Á, Visiedo F, Domínguez-Riscart J, Ruiz-Mateos B, Saez-Benito A, Lechuga-Sancho AM, Mateos RM. Blunted Reducing Power Generation in Erythrocytes Contributes to Oxidative Stress in Prepubertal Obese Children with Insulin Resistance. Antioxidants (Basel) 2021;10:244. [PMID: 33562490 DOI: 10.3390/antiox10020244] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Liu L, Huang L, Sun C, Wang L, Jin C, Lin X. Cross-Talk between Hydrogen Peroxide and Nitric Oxide during Plant Development and Responses to Stress. J Agric Food Chem 2021;69:9485-97. [PMID: 34428901 DOI: 10.1021/acs.jafc.1c01605] [Reference Citation Analysis]
22 Corpas FJ, González-Gordo S, Palma JM. Nitric Oxide (NO) Scaffolds the Peroxisomal Protein-Protein Interaction Network in Higher Plants. Int J Mol Sci 2021;22:2444. [PMID: 33671021 DOI: 10.3390/ijms22052444] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
23 Palma JM, Terán F, Contreras-Ruiz A, Rodríguez-Ruiz M, Corpas FJ. Antioxidant Profile of Pepper (Capsicum annuum L.) Fruits Containing Diverse Levels of Capsaicinoids. Antioxidants (Basel) 2020;9:E878. [PMID: 32957493 DOI: 10.3390/antiox9090878] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Tayal R, Kumar V, Irfan M. Harnessing the power of hydrogen sulphide (H2 S) for improving fruit quality traits. Plant Biol (Stuttg) 2021. [PMID: 34866296 DOI: 10.1111/plb.13372] [Reference Citation Analysis]
25 Zandi P, Schnug E. Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective. Biology (Basel) 2022;11:155. [PMID: 35205022 DOI: 10.3390/biology11020155] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Liu H, Wang J, Liu J, Liu T, Xue S. Hydrogen sulfide (H2S) signaling in plant development and stress responses. Abiotech 2021;:1-32. [PMID: 34377579 DOI: 10.1007/s42994-021-00035-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
27 Wang C, Deng Y, Liu Z, Liao W. Hydrogen Sulfide in Plants: Crosstalk with Other Signal Molecules in Response to Abiotic Stresses. Int J Mol Sci 2021;22:12068. [PMID: 34769505 DOI: 10.3390/ijms222112068] [Reference Citation Analysis]
28 Corpas FJ, González-Gordo S, Muñoz-Vargas MA, Rodríguez-Ruiz M, Palma JM. The Modus Operandi of Hydrogen Sulfide(H2S)-Dependent Protein Persulfidation in Higher Plants. Antioxidants (Basel) 2021;10:1686. [PMID: 34829557 DOI: 10.3390/antiox10111686] [Reference Citation Analysis]
29 Kharbech O, Sakouhi L, Ben Massoud M, Jose Mur LA, Corpas FJ, Djebali W, Chaoui A. Nitric oxide and hydrogen sulfide protect plasma membrane integrity and mitigate chromium-induced methylglyoxal toxicity in maize seedlings. Plant Physiology and Biochemistry 2020;157:244-55. [DOI: 10.1016/j.plaphy.2020.10.017] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
30 Mishra V, Singh P, Tripathi DK, Corpas FJ, Singh VP. Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning. Trends Plant Sci 2021;26:1270-85. [PMID: 34417078 DOI: 10.1016/j.tplants.2021.07.016] [Cited by in Crossref: 4] [Article Influence: 4.0] [Reference Citation Analysis]
31 Houmani H, Debez A, Freitas-silva LD, Abdelly C, Palma JM, Corpas FJ. Potassium (K+) Starvation-Induced Oxidative Stress Triggers a General Boost of Antioxidant and NADPH-Generating Systems in the Halophyte Cakile maritima. Antioxidants 2022;11:401. [DOI: 10.3390/antiox11020401] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology (Basel) 2021;10:267. [PMID: 33810535 DOI: 10.3390/biology10040267] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
33 Dvořák P, Krasylenko Y, Zeiner A, Šamaj J, Takáč T. Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants. Front Plant Sci 2020;11:618835. [PMID: 33597960 DOI: 10.3389/fpls.2020.618835] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
34 Singh A, Mehta S, Yadav S, Nagar G, Ghosh R, Roy A, Chakraborty A, Singh IK. How to Cope with the Challenges of Environmental Stresses in the Era of Global Climate Change: An Update on ROS Stave off in Plants. Int J Mol Sci 2022;23:1995. [PMID: 35216108 DOI: 10.3390/ijms23041995] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
35 Kalemba EM, Wawrzyniak MK, Suszka J, Chmielarz P. Thermotherapy and Storage Temperature Manipulations Limit the Production of Reactive Oxygen Species in Stored Pedunculate Oak Acorns. Forests 2021;12:1338. [DOI: 10.3390/f12101338] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Treffon P, Rossi J, Gabellini G, Trost P, Zaffagnini M, Vierling E. Quantitative Proteome Profiling of a S-Nitrosoglutathione Reductase (GSNOR) Null Mutant Reveals a New Class of Enzymes Involved in Nitric Oxide Homeostasis in Plants. Front Plant Sci 2021;12:787435. [PMID: 34956283 DOI: 10.3389/fpls.2021.787435] [Reference Citation Analysis]
37 Khan MN, Siddiqui MH, Alsolami MA, Alamri S, Hu Y, Ali HM, Al-amri AA, Alsubaie QD, Al-munqedhi BM, Al-ghamdi A. Crosstalk of hydrogen sulfide and nitric oxide requires calcium to mitigate impaired photosynthesis under cadmium stress by activating defense mechanisms in Vigna radiata. Plant Physiology and Biochemistry 2020;156:278-90. [DOI: 10.1016/j.plaphy.2020.09.017] [Cited by in Crossref: 21] [Cited by in F6Publishing: 10] [Article Influence: 10.5] [Reference Citation Analysis]
38 Corpas FJ, González-Gordo S, Palma JM. Nitric oxide: A radical molecule with potential biotechnological applications in fruit ripening. J Biotechnol 2020;324:211-9. [PMID: 33115661 DOI: 10.1016/j.jbiotec.2020.10.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
39 González-gordo S, Palma JM, Corpas FJ. Peroxisomal Proteome Mining of Sweet Pepper (Capsicum annuum L.) Fruit Ripening Through Whole Isobaric Tags for Relative and Absolute Quantitation Analysis. Front Plant Sci 2022;13:893376. [DOI: 10.3389/fpls.2022.893376] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Iwaniuk P, Borusiewicz A, Lozowicka B. Fluazinam and its mixtures induce diversified changes of crucial biochemical and antioxidant profile in leafy vegetable. Scientia Horticulturae 2022;298:110988. [DOI: 10.1016/j.scienta.2022.110988] [Reference Citation Analysis]
41 Bhat JA, Ahmad P, Corpas FJ. Main nitric oxide (NO) hallmarks to relieve arsenic stress in higher plants. Journal of Hazardous Materials 2021;406:124289. [DOI: 10.1016/j.jhazmat.2020.124289] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
42 González-gordo S, Rodríguez-ruiz M, López-jaramillo J, Muñoz-vargas MA, Palma JM, Corpas FJ. Nitric Oxide (NO) Differentially Modulates the Ascorbate Peroxidase (APX) Isozymes of Sweet Pepper (Capsicum annuum L.) Fruits. Antioxidants 2022;11:765. [DOI: 10.3390/antiox11040765] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
43 Martínez C, Valenzuela JL, Jamilena M. Genetic and Pre- and Postharvest Factors Influencing the Content of Antioxidants in Cucurbit Crops. Antioxidants (Basel) 2021;10:894. [PMID: 34199481 DOI: 10.3390/antiox10060894] [Reference Citation Analysis]
44 Corpas FJ, González-gordo S, Palma JM. Protein nitration: A connecting bridge between nitric oxide (NO) and plant stress. Plant Stress 2021;2:100026. [DOI: 10.1016/j.stress.2021.100026] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
45 Nabi A, Naeem M, Aftab T, Khan MMA, Ahmad P. A comprehensive review of adaptations in plants under arsenic toxicity: Physiological, metabolic and molecular interventions. Environ Pollut 2021;290:118029. [PMID: 34474375 DOI: 10.1016/j.envpol.2021.118029] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
46 Jha S, Singh J, Chouhan C, Singh O, Srivastava RK. Evaluation of Multiple Salinity Tolerance Indices for Screening and Comparative Biochemical and Molecular Analysis of Pearl Millet [Pennisetum glaucum (L.) R. Br.] Genotypes. J Plant Growth Regul. [DOI: 10.1007/s00344-021-10424-0] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
47 Kalemba EM, Alipour S, Wojciechowska N. NAD(P)H Drives the Ascorbate-Glutathione Cycle and Abundance of Catalase in Developing Beech Seeds Differently in Embryonic Axes and Cotyledons. Antioxidants (Basel) 2021;10:2021. [PMID: 34943124 DOI: 10.3390/antiox10122021] [Reference Citation Analysis]
48 Corpas FJ, González-Gordo S, Palma JM. Plant Peroxisomes: A Factory of Reactive Species. Front Plant Sci 2020;11:853. [PMID: 32719691 DOI: 10.3389/fpls.2020.00853] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
49 López-huertas E, Palma JM. Changes in Glutathione, Ascorbate, and Antioxidant Enzymes during Olive Fruit Ripening. J Agric Food Chem 2020;68:12221-8. [DOI: 10.1021/acs.jafc.0c04789] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
50 Aghdam MS, Palma JM, Corpas FJ. NADPH as a quality footprinting in horticultural crops marketability. Trends in Food Science & Technology 2020;103:152-61. [DOI: 10.1016/j.tifs.2020.07.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
51 Huang D, Wang Y, Zhang D, Dong Y, Meng Q, Zhu S, Zhang L. Strigolactone maintains strawberry quality by regulating phenylpropanoid, NO, and H2S metabolism during storage. Postharvest Biology and Technology 2021;178:111546. [DOI: 10.1016/j.postharvbio.2021.111546] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
52 Ozfidan-konakci C, Yildiztugay E, Arikan B, Elbasan F, Alp FN, Kucukoduk M. Hydrogen Sulfide Protects Damage From Methyl Viologen-Mediated Oxidative Stress by Improving Gas Exchange, Fluorescence Kinetics of Photosystem II, and Antioxidant System in Arabidopsis thaliana. J Plant Growth Regul. [DOI: 10.1007/s00344-022-10612-6] [Reference Citation Analysis]
53 Khan MSS, Islam F, Ye Y, Ashline M, Wang D, Zhao B, Fu ZQ, Chen J. The Interplay between Hydrogen Sulfide and Phytohormone Signaling Pathways under Challenging Environments. Int J Mol Sci 2022;23:4272. [PMID: 35457090 DOI: 10.3390/ijms23084272] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
54 Solórzano E, Corpas FJ, González-gordo S, Palma JM. Reactive Oxygen Species (ROS) Metabolism and Nitric Oxide (NO) Content in Roots and Shoots of Rice (Oryza sativa L.) Plants under Arsenic-Induced Stress. Agronomy 2020;10:1014. [DOI: 10.3390/agronomy10071014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
55 Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. J Exp Bot 2021;72:830-47. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
56 Lu S, Hu Q, Yu L. Construction of a liquid Crystal-based Sensing Platform for the Sensitive Detection of Catalase in Human Serum. Microchemical Journal 2022;181:107705. [DOI: 10.1016/j.microc.2022.107705] [Reference Citation Analysis]
57 Callegari DM, Lima AM, Ferreira Barros NL, Siqueira AS, Moura EF, Batista de Souza CR. Changes in transcript levels of cassava superoxide dismutase and catalase during interaction with Phytopythium sp. Physiological and Molecular Plant Pathology 2021;114:101629. [DOI: 10.1016/j.pmpp.2021.101629] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]