BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Yang J, Wu Q, Xu L, Wang Z, Su K, Liu R, Yen EA, Liu S, Qin J, Rong Y, Lu Y, Niu T. Integrating tumor and nodal radiomics to predict lymph node metastasis in gastric cancer. Radiother Oncol 2020;150:89-96. [PMID: 32531334 DOI: 10.1016/j.radonc.2020.06.004] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Ma X, Shu L, Jia X, Zhou H, Liu T, Liang J, Ding Y, He M, Shu Q. Machine Learning-Based CT Radiomics Method for Identifying the Stage of Wilms Tumor in Children. Front Pediatr 2022;10:873035. [DOI: 10.3389/fped.2022.873035] [Reference Citation Analysis]
2 Sugai Y, Kadoya N, Tanaka S, Tanabe S, Umeda M, Yamamoto T, Takeda K, Dobashi S, Ohashi H, Takeda K, Jingu K. Impact of feature selection methods and subgroup factors on prognostic analysis with CT-based radiomics in non-small cell lung cancer patients. Radiat Oncol 2021;16:80. [PMID: 33931085 DOI: 10.1186/s13014-021-01810-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Qin Y, Deng Y, Jiang H, Hu N, Song B. Artificial Intelligence in the Imaging of Gastric Cancer: Current Applications and Future Direction. Front Oncol 2021;11:631686. [PMID: 34367946 DOI: 10.3389/fonc.2021.631686] [Reference Citation Analysis]
4 Wang X, Li C, Fang M, Zhang L, Zhong L, Dong D, Tian J, Shan X. Integrating No.3 lymph nodes and primary tumor radiomics to predict lymph node metastasis in T1-2 gastric cancer. BMC Med Imaging 2021;21:58. [PMID: 33757460 DOI: 10.1186/s12880-021-00587-3] [Reference Citation Analysis]
5 Crimì F, Bao QR, Mari V, Zanon C, Cabrelle G, Spolverato G, Pucciarelli S, Quaia E. Predictors of Metastatic Lymph Nodes at Preoperative Staging CT in Gastric Adenocarcinoma. Tomography 2022;8:1196-207. [DOI: 10.3390/tomography8030098] [Reference Citation Analysis]
6 Wang F, Tan R, Feng K, Hu J, Zhuang Z, Wang C, Hou J, Liu X. Magnetic Resonance Imaging-Based Radiomics Features Associated with Depth of Invasion Predicted Lymph Node Metastasis and Prognosis in Tongue Cancer. J Magn Reson Imaging 2021. [PMID: 34888985 DOI: 10.1002/jmri.28019] [Reference Citation Analysis]
7 Wan Y, Yang P, Xu L, Yang J, Luo C, Wang J, Chen F, Wu Y, Lu Y, Ruan D, Niu T. Radiomics analysis combining unsupervised learning and handcrafted features: A multiple-disease study. Med Phys 2021;48:7003-15. [PMID: 34453332 DOI: 10.1002/mp.15199] [Reference Citation Analysis]
8 Jiang Y, Sun J, Xia Y, Cheng Y, Xie L, Guo X, Guo Y. Preoperative Assessment for Event-Free Survival With Hepatoblastoma in Pediatric Patients by Developing a CT-Based Radiomics Model. Front Oncol 2021;11:644994. [PMID: 33937051 DOI: 10.3389/fonc.2021.644994] [Reference Citation Analysis]
9 Reginelli A, Nardone V, Giacobbe G, Belfiore MP, Grassi R, Schettino F, Del Canto M, Grassi R, Cappabianca S. Radiomics as a New Frontier of Imaging for Cancer Prognosis: A Narrative Review. Diagnostics (Basel) 2021;11:1796. [PMID: 34679494 DOI: 10.3390/diagnostics11101796] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Bera K, Braman N, Gupta A, Velcheti V, Madabhushi A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol 2021. [PMID: 34663898 DOI: 10.1038/s41571-021-00560-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Iacobellis F, Narese D, Berritto D, Brillantino A, Di Serafino M, Guerrini S, Grassi R, Scaglione M, Mazzei MA, Romano L. Large Bowel Ischemia/Infarction: How to Recognize It and Make Differential Diagnosis? A Review. Diagnostics (Basel) 2021;11:998. [PMID: 34070924 DOI: 10.3390/diagnostics11060998] [Reference Citation Analysis]