BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xu F. Versatile types of hydroxyl-rich polycationic systems via O-heterocyclic ring-opening reactions: From strategic design to nucleic acid delivery applications. Progress in Polymer Science 2018;78:56-91. [DOI: 10.1016/j.progpolymsci.2017.09.003] [Cited by in Crossref: 45] [Cited by in F6Publishing: 33] [Article Influence: 11.3] [Reference Citation Analysis]
Number Citing Articles
1 Gong X, Li Y, Wang D, Cao H, Yang Z, Wang H, Wang L. Process-Biomimetic Macromolecular Materials for In Vivo Applications. Progress in Materials Science 2022. [DOI: 10.1016/j.pmatsci.2022.101015] [Reference Citation Analysis]
2 Li L, Wang Y, Huang T, He X, Zhang K, Kang ET, Xu L. Cationic porphyrin-based nanoparticles for photodynamic inactivation and identification of bacteria strains. Biomater Sci 2022. [PMID: 35522076 DOI: 10.1039/d2bm00265e] [Reference Citation Analysis]
3 Wang J, Zhang L, Li Z. Aggregation-Induced Emission Luminogens with Photoresponsive Behaviors for Biomedical Applications. Adv Healthc Mater 2021;10:e2101169. [PMID: 34783194 DOI: 10.1002/adhm.202101169] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
4 Jiang C, Fan W, Zhang N, Zhao G, Wang W, Bai L, Chen H, Yang H. Surface engineering of cellulose nanocrystals via SI-AGET ATRP of glycidyl methacrylate and ring-opening reaction for fabricating self-healing nanocomposite hydrogels. Cellulose 2021;28:9785-801. [DOI: 10.1007/s10570-021-04170-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Yong HW, Kakkar A. Nanoengineering Branched Star Polymer-Based Formulations: Scope, Strategies, and Advances. Macromol Biosci 2021;21:e2100105. [PMID: 34117840 DOI: 10.1002/mabi.202100105] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
6 Nie JJ, Liu Y, Qi Y, Zhang N, Yu B, Chen DF, Yang M, Xu FJ. Charge-reversal nanocomolexes-based CRISPR/Cas9 delivery system for loss-of-function oncogene editing in hepatocellular carcinoma. J Control Release 2021;333:362-73. [PMID: 33785418 DOI: 10.1016/j.jconrel.2021.03.030] [Reference Citation Analysis]
7 Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Muhammad K, Zhao J, Gao B, Feng Y. Polymeric nano-carriers for on-demand delivery of genes via specific responses to stimuli. J Mater Chem B 2020;8:9621-41. [PMID: 32955058 DOI: 10.1039/d0tb01675f] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 11.0] [Reference Citation Analysis]
9 Diaz-Dussan D, Peng YY, Kumar P, Narain R. Oncogenic Epidermal Growth Factor Receptor Silencing in Cervical Carcinoma Mediated by Dynamic Sugar-Benzoxaborole Polyplexes. ACS Macro Lett 2020;9:1464-70. [PMID: 35653664 DOI: 10.1021/acsmacrolett.0c00599] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
10 Qi Y, Liu Y, Yu B, Hu Y, Zhang N, Zheng Y, Yang M, Xu FJ. A Lactose-Derived CRISPR/Cas9 Delivery System for Efficient Genome Editing In Vivo to Treat Orthotopic Hepatocellular Carcinoma. Adv Sci (Weinh) 2020;7:2001424. [PMID: 32995132 DOI: 10.1002/advs.202001424] [Cited by in Crossref: 26] [Cited by in F6Publishing: 18] [Article Influence: 13.0] [Reference Citation Analysis]
11 Yang Z, Guo Z, Tian H, Chen X. Enhancers in polymeric nonviral gene delivery systems. View 2021;2:20200072. [DOI: 10.1002/viw.20200072] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Xu C, Hu W, Zhang N, Qi Y, Nie J, Zhao N, Yu B, Xu F. Genetically multimodal therapy mediated by one polysaccharides-based supramolecular nanosystem. Biomaterials 2020;248:120031. [DOI: 10.1016/j.biomaterials.2020.120031] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
13 Chen P, Zhang J, He X, Liu YH, Yu XQ. Hydrophobically modified carbon dots as a multifunctional platform for serum-resistant gene delivery and cell imaging. Biomater Sci 2020;8:3730-40. [PMID: 32501458 DOI: 10.1039/d0bm00651c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
14 Li Z, Hao B, Tang Y, Li H, Lee T, Feng A, Zhang L, Thang SH. Effect of end-groups on sulfobetaine homopolymers with the tunable upper critical solution temperature (UCST). European Polymer Journal 2020;132:109704. [DOI: 10.1016/j.eurpolymj.2020.109704] [Cited by in Crossref: 7] [Cited by in F6Publishing: 2] [Article Influence: 3.5] [Reference Citation Analysis]
15 Zhang J, He X, Xiao Y, Zhang J, Wu X, Yu X. Cationic Heteropolymers with Various Functional Groups as Efficient and Biocompatible Nonviral Gene Vectors. ACS Appl Bio Mater 2020;3:3526-34. [DOI: 10.1021/acsabm.0c00118] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Qi Y, Xu C, Xu F. Degradable branched polycationic systems for nucleic acid delivery. WIREs Nanomed Nanobiotechnol 2020;12. [DOI: 10.1002/wnan.1631] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Bai S, Li X, Zhao Y, Ren L, Yuan X. Antifogging/Antibacterial Coatings Constructed by N-Hydroxyethylacrylamide and Quaternary Ammonium-Containing Copolymers. ACS Appl Mater Interfaces 2020;12:12305-16. [PMID: 32068389 DOI: 10.1021/acsami.9b21871] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
18 Zhao N, Fan W, Zhao X, Liu Y, Hu Y, Duan F, Xu F. Polycation–Carbon Nanohybrids with Superior Rough Hollow Morphology for the NIR-II Responsive Multimodal Therapy. ACS Appl Mater Interfaces 2020;12:11341-52. [DOI: 10.1021/acsami.9b22373] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
19 Gao B, Wang X, Wang M, Ren X, Guo J, Xia S, Zhang W, Feng Y. From single to a dual-gene delivery nanosystem: coordinated expression matters for boosting the neovascularization in vivo. Biomater Sci 2020;8:2318-28. [DOI: 10.1039/c9bm02000d] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
20 Zhi L, Li X, Wang H, Xue Y, Zhang Q, Wang X. Dynamic Surface Properties of Eco-Friendly Cationic Saccharide Surfactants at the Water/Air Interface. Tenside Surfactants Detergents 2019;56:473-83. [DOI: 10.3139/113.110650] [Reference Citation Analysis]
21 Liu Y, Zhao N, Xu FJ. pH-Responsive Degradable Dextran-Quantum Dot Nanohybrids for Enhanced Gene Delivery. ACS Appl Mater Interfaces 2019;11:34707-16. [PMID: 31482705 DOI: 10.1021/acsami.9b12198] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
22 Ye W, Chen Y, Tang W, Zhang N, Li Z, Liu Z, Yu B, Xu FJ. Reduction-Responsive Nucleic Acid Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS Appl Mater Interfaces 2019;11:28307-16. [PMID: 31356048 DOI: 10.1021/acsami.9b08544] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
23 Zhang X, Xu C, Gao S, Li P, Kong Y, Li T, Li Y, Xu FJ, Du J. CRISPR/Cas9 Delivery Mediated with Hydroxyl-Rich Nanosystems for Gene Editing in Aorta. Adv Sci (Weinh) 2019;6:1900386. [PMID: 31380173 DOI: 10.1002/advs.201900386] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 5.3] [Reference Citation Analysis]
24 Zhi Y, Xu C, Sui D, Du J, Xu FJ, Li Y. Effective Delivery of Hypertrophic miRNA Inhibitor by Cholesterol-Containing Nanocarriers for Preventing Pressure Overload Induced Cardiac Hypertrophy. Adv Sci (Weinh) 2019;6:1900023. [PMID: 31179215 DOI: 10.1002/advs.201900023] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 5.7] [Reference Citation Analysis]
25 Wu J, Chen J, Feng Y, Tian H, Chen X. Tumor microenvironment as the "regulator" and "target" for gene therapy. J Gene Med 2019;21:e3088. [PMID: 30938916 DOI: 10.1002/jgm.3088] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
26 Chen Y, Diaz-Dussan D, Peng YY, Narain R. Hydroxyl-Rich PGMA-Based Cationic Glycopolymers for Intracellular siRNA Delivery: Biocompatibility and Effect of Sugar Decoration Degree. Biomacromolecules 2019;20:2068-74. [PMID: 30970212 DOI: 10.1021/acs.biomac.9b00274] [Cited by in Crossref: 16] [Cited by in F6Publishing: 9] [Article Influence: 5.3] [Reference Citation Analysis]
27 Guo K, Zhao X, Dai X, Zhao N, Xu FJ. Organic/inorganic nanohybrids as multifunctional gene delivery systems. J Gene Med 2019;21:e3084. [PMID: 30850992 DOI: 10.1002/jgm.3084] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 4.3] [Reference Citation Analysis]
28 Fang H, Feng Y, Chen J, Tian H, Chen X. Constructing efficient polycationic gene carriers through regulating the physicochemical properties. Materials Today Chemistry 2019;11:269-82. [DOI: 10.1016/j.mtchem.2018.11.007] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
29 Tan L, Shang L. Smart Delivery Systems Based on Poly(glycidyl methacrylate)s‐Coated Organic/Inorganic Core–Shell Nanohybrids. Macromol Rapid Commun 2019;40:1800879. [DOI: 10.1002/marc.201800879] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
30 Fan W, Shao M, Zhang J, Jin G, Liu F, Xu F. A Hybrid Nanovector of Suicide Gene Engineered Lentivirus Coated with Bioreducible Polyaminoglycosides for Enhancing Therapeutic Efficacy against Glioma. Adv Funct Mater 2019;29:1807104. [DOI: 10.1002/adfm.201807104] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
31 Huang X, Li Z, Wu J, Hang Y, Wang H, Yuan L, Chen H. Small addition of Zn2+ in Ca2+@DNA results in elevated gene transfection by aminated PGMA-modified silicon nanowire arrays. J Mater Chem B 2019;7:566-75. [PMID: 32254790 DOI: 10.1039/c8tb03045f] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
32 Xu C, Wu Y, Li Z, Loh XJ. Cyclodextrin-based sustained gene release systems: a supramolecular solution towards clinical applications. Mater Chem Front 2019;3:181-92. [DOI: 10.1039/c8qm00570b] [Cited by in Crossref: 23] [Article Influence: 7.7] [Reference Citation Analysis]
33 Gao B, Zhang Q, Wang X, Wang M, Ren X, Guo J, Xia S, Zhang W, Feng Y. A “self-accelerating endosomal escape” siRNA delivery nanosystem for significantly suppressing hyperplasia via blocking the ERK2 pathway. Biomater Sci 2019;7:3307-19. [DOI: 10.1039/c9bm00451c] [Cited by in Crossref: 6] [Article Influence: 2.0] [Reference Citation Analysis]
34 Fang H, Lin L, Chen J, Wu J, Tian H, Chen X. Zinc ion coordination significantly improved the transfection efficiency of low molecular weight polyethylenimine. Biomater Sci 2019;7:1716-28. [DOI: 10.1039/c9bm00039a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 1] [Article Influence: 2.3] [Reference Citation Analysis]
35 Zhao N, Yan L, Zhao X, Chen X, Li A, Zheng D, Zhou X, Dai X, Xu F. Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chem Rev 2019;119:1666-762. [DOI: 10.1021/acs.chemrev.8b00401] [Cited by in Crossref: 147] [Cited by in F6Publishing: 105] [Article Influence: 36.8] [Reference Citation Analysis]
36 Luo Z, Jiang L, Ding C, Hu B, Loh XJ, Li Z, Wu YL. Surfactant Free Delivery of Docetaxel by Poly[(R)-3-hydroxybutyrate-(R)-3-hydroxyhexanoate]-Based Polymeric Micelles for Effective Melanoma Treatments. Adv Healthc Mater 2018;7:e1801221. [PMID: 30398017 DOI: 10.1002/adhm.201801221] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 6.8] [Reference Citation Analysis]
37 Qi Y, Song H, Xiao H, Cheng G, Yu B, Xu FJ. Fluorinated Acid-Labile Branched Hydroxyl-Rich Nanosystems for Flexible and Robust Delivery of Plasmids. Small 2018;14:e1803061. [PMID: 30238691 DOI: 10.1002/smll.201803061] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 7.3] [Reference Citation Analysis]
38 Ding X, Duan S, Ding X, Liu R, Xu F. Versatile Antibacterial Materials: An Emerging Arsenal for Combatting Bacterial Pathogens. Adv Funct Mater 2018;28:1802140. [DOI: 10.1002/adfm.201802140] [Cited by in Crossref: 238] [Cited by in F6Publishing: 181] [Article Influence: 59.5] [Reference Citation Analysis]
39 Nie JJ, Qiao B, Duan S, Xu C, Chen B, Hao W, Yu B, Li Y, Du J, Xu FJ. Unlockable Nanocomplexes with Self-Accelerating Nucleic Acid Release for Effective Staged Gene Therapy of Cardiovascular Diseases. Adv Mater 2018;30:e1801570. [PMID: 29920798 DOI: 10.1002/adma.201801570] [Cited by in Crossref: 57] [Cited by in F6Publishing: 59] [Article Influence: 14.3] [Reference Citation Analysis]
40 Chen X, Zhang Q, Li J, Yang M, Zhao N, Xu FJ. Rattle-Structured Rough Nanocapsules with in-Situ-Formed Gold Nanorod Cores for Complementary Gene/Chemo/Photothermal Therapy. ACS Nano 2018;12:5646-56. [PMID: 29870655 DOI: 10.1021/acsnano.8b01440] [Cited by in Crossref: 116] [Cited by in F6Publishing: 102] [Article Influence: 29.0] [Reference Citation Analysis]
41 Song L, Zhou X, Dai X, Wang R, Cheng G, Zhao N, Xu F. Self-destructible polysaccharide nanocomposites with unlockable Au nanorods for high-performance photothermal therapy. NPG Asia Mater 2018;10:509-21. [DOI: 10.1038/s41427-018-0053-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
42 Wu Y, Gu W, Chen C, Do ST, Xu ZP. Optimization of Formulations Consisting of Layered Double Hydroxide Nanoparticles and Small Interfering RNA for Efficient Knockdown of the Target Gene. ACS Omega 2018;3:4871-7. [PMID: 30023905 DOI: 10.1021/acsomega.8b00397] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
43 Wang H, Miao W, Wang F, Cheng Y. A Self-Assembled Coumarin-Anchored Dendrimer for Efficient Gene Delivery and Light-Responsive Drug Delivery. Biomacromolecules 2018;19:2194-201. [PMID: 29684275 DOI: 10.1021/acs.biomac.8b00246] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 7.8] [Reference Citation Analysis]
44 Song H, Qi Y, Li R, Cheng G, Zhao N, Xu F. High-performance cationic polyrotaxanes terminated with polypeptides as promising nucleic acid delivery systems. Polym Chem 2018;9:2281-9. [DOI: 10.1039/c8py00333e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 1] [Article Influence: 3.3] [Reference Citation Analysis]