BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hu Y, Zhao Z, Ehrich M, Fuhrman K, Zhang C. In vitro controlled release of antigen in dendritic cells using pH-sensitive liposome-polymeric hybrid nanoparticles. Polymer (Guildf) 2015;80:171-9. [PMID: 26622069 DOI: 10.1016/j.polymer.2015.10.048] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Zhang M, He J, Zhang W, Liu J. Fabrication of TPGS-Stabilized Liposome-PLGA Hybrid Nanoparticle Via a New Modified Nanoprecipitation Approach: In Vitro and In Vivo Evaluation. Pharm Res 2018;35. [DOI: 10.1007/s11095-018-2485-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
2 Duan X, Zhang R, Zhang Y, Ding M, Shi T, An L, Huang Q, Xu W. Monte Carlo study on a complex of cationic polymers and anionic lipid monolayer. Polymer 2016;104:138-48. [DOI: 10.1016/j.polymer.2016.10.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
3 Zhao Z, Hu Y, Harmon T, Pentel P, Ehrich M, Zhang C. Rationalization of a nanoparticle-based nicotine nanovaccine as an effective next-generation nicotine vaccine: A focus on hapten localization. Biomaterials 2017;138:46-56. [PMID: 28551462 DOI: 10.1016/j.biomaterials.2017.05.031] [Cited by in Crossref: 18] [Cited by in F6Publishing: 14] [Article Influence: 3.6] [Reference Citation Analysis]
4 Clement S, Chen W, Deng W, Goldys EM. X-ray radiation-induced and targeted photodynamic therapy with folic acid-conjugated biodegradable nanoconstructs. Int J Nanomedicine 2018;13:3553-70. [PMID: 29950835 DOI: 10.2147/IJN.S164967] [Cited by in Crossref: 19] [Cited by in F6Publishing: 12] [Article Influence: 4.8] [Reference Citation Analysis]
5 Zhao Z, Lou S, Hu Y, Zhu J, Zhang C. A Nano-in-Nano Polymer-Dendrimer Nanoparticle-Based Nanosystem for Controlled Multidrug Delivery. Mol Pharm 2017;14:2697-710. [PMID: 28704056 DOI: 10.1021/acs.molpharmaceut.7b00219] [Cited by in Crossref: 33] [Cited by in F6Publishing: 36] [Article Influence: 6.6] [Reference Citation Analysis]
6 Badrinath N, Jeong YI, Woo HY, Bang SY, Kim C, Heo J, Kang DH, Yoo SY. Local delivery of a cancer-favoring oncolytic vaccinia virus via poly (lactic-co-glycolic acid) nanofiber for theranostic purposes. Int J Pharm 2018;552:437-42. [PMID: 30308276 DOI: 10.1016/j.ijpharm.2018.10.020] [Cited by in Crossref: 14] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
7 Sun X, Dong S, Li X, Yu K, Sun F, Lee RJ, Li Y, Teng L. Delivery of siRNA using folate receptor-targeted pH-sensitive polymeric nanoparticles for rheumatoid arthritis therapy. Nanomedicine 2019;20:102017. [PMID: 31128293 DOI: 10.1016/j.nano.2019.102017] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
8 Hu Y, Zhao Z, Harmon T, Pentel PR, Ehrich M, Zhang C. Paradox of PEGylation in fabricating hybrid nanoparticle-based nicotine vaccines. Biomaterials 2018;182:72-81. [PMID: 30107271 DOI: 10.1016/j.biomaterials.2018.08.015] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
9 Bruneau M, Bennici S, Brendle J, Dutournie P, Limousy L, Pluchon S. Systems for stimuli-controlled release: Materials and applications. Journal of Controlled Release 2019;294:355-71. [DOI: 10.1016/j.jconrel.2018.12.038] [Cited by in Crossref: 50] [Cited by in F6Publishing: 33] [Article Influence: 16.7] [Reference Citation Analysis]
10 Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017;9. [PMID: 28198148 DOI: 10.1002/wnan.1450] [Cited by in Crossref: 123] [Cited by in F6Publishing: 92] [Article Influence: 24.6] [Reference Citation Analysis]
11 Hu Y, Smith D, Frazier E, Zhao Z, Zhang C. Toll-like Receptor 9 Agonists as Adjuvants for Nanoparticle-Based Nicotine Vaccine. Mol Pharm 2021;18:1293-304. [PMID: 33497574 DOI: 10.1021/acs.molpharmaceut.0c01153] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Zhao Z, Hu Y, Harmon T, Pentel PR, Ehrich M, Zhang C. Hybrid nanoparticle-based nicotine nanovaccines: Boosting the immunological efficacy by conjugation of potent carrier proteins. Nanomedicine 2018;14:1655-65. [PMID: 29719216 DOI: 10.1016/j.nano.2018.04.016] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
13 Li B, Li B, He D, Feng C, Luo Z, He M. Preparation, Characterization, and In Vitro pH-sensitivity Evaluation of Superparamagnetic Iron Oxide Nanoparticle- Misonidazole pH-sensitive Liposomes. CDD 2019;16:254-67. [DOI: 10.2174/1567201816666181114124333] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
14 Zhao Z, Hu Y, Harmon T, Pentel P, Ehrich M, Zhang C. Effect of Adjuvant Release Rate on the Immunogenicity of Nanoparticle-Based Vaccines: A Case Study with a Nanoparticle-Based Nicotine Vaccine. Mol Pharm 2019;16:2766-75. [PMID: 31075204 DOI: 10.1021/acs.molpharmaceut.9b00279] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
15 Duan X, Zhang R, Ding M, Huang Q, Xu W, Shi T, An L. Adsorption of a hydrophobic cationic polypeptide onto acidic lipid membrane. Polymer 2017;122:125-38. [DOI: 10.1016/j.polymer.2017.06.058] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
16 Zhang Q, Zhang C, Feng L, Wang L, Qi J, Dong Y, Zhou YL, Hu K, Zhang Y. Effects of nanoparticle-mediated Co-delivery of bFGF and VEGFA genes to deep burn wounds: An in vivo study. Colloids Surf B Biointerfaces 2021;209:112135. [PMID: 34655915 DOI: 10.1016/j.colsurfb.2021.112135] [Reference Citation Analysis]
17 Thauvin C, Widmer J, Mottas I, Hocevar S, Allémann E, Bourquin C, Delie F. Development of resiquimod-loaded modified PLA-based nanoparticles for cancer immunotherapy: A kinetic study. Eur J Pharm Biopharm 2019;139:253-61. [PMID: 30981947 DOI: 10.1016/j.ejpb.2019.04.007] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 5.7] [Reference Citation Analysis]
18 Kumar ARK, Shou Y, Chan B, L K, Tay A. Materials for Improving Immune Cell Transfection. Adv Mater 2021;33:e2007421. [PMID: 33860598 DOI: 10.1002/adma.202007421] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
19 Yang QQ, Shao YX, Zhang LZ, Zhou YL. Therapeutic strategies for flexor tendon healing by nanoparticle-mediated co-delivery of bFGF and VEGFA genes. Colloids and Surfaces B: Biointerfaces 2018;164:165-76. [DOI: 10.1016/j.colsurfb.2018.01.031] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
20 Hu Y, Smith D, Frazier E, Hoerle R, Ehrich M, Zhang C. The next-generation nicotine vaccine: a novel and potent hybrid nanoparticle-based nicotine vaccine. Biomaterials 2016;106:228-39. [PMID: 27569868 DOI: 10.1016/j.biomaterials.2016.08.028] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 3.5] [Reference Citation Analysis]
21 Stromberg ZR, Lisa Phipps M, Magurudeniya HD, Pedersen CA, Rajale T, Sheehan CJ, Courtney SJ, Bradfute SB, Hraber P, Rush MN, Kubicek-Sutherland JZ, Martinez JS. Formulation of stabilizer-free, nontoxic PLGA and elastin-PLGA nanoparticle delivery systems. Int J Pharm 2021;597:120340. [PMID: 33545284 DOI: 10.1016/j.ijpharm.2021.120340] [Reference Citation Analysis]