BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Castora FJ. Mitochondrial function and abnormalities implicated in the pathogenesis of ASD. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2019;92:83-108. [DOI: 10.1016/j.pnpbp.2018.12.015] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 8.8] [Reference Citation Analysis]
Number Citing Articles
1 Li D, He J, Fang C, Zhang Y, He M, Zhang Z, Hou J, Xu Q. METTL3 Regulates Osteoclast Biological Behaviors via iNOS/NO-Mediated Mitochondrial Dysfunction in Inflammatory Conditions. Int J Mol Sci 2023;24. [PMID: 36674918 DOI: 10.3390/ijms24021403] [Reference Citation Analysis]
2 Liu Z, Tan S, Zhou L, Chen L, Liu M, Wang W, Tang Y, Yang Q, Chi S, Jiang P, Zhang Y, Cui Y, Qin J, Hu X, Li S, Liu Q, Chen L, Li S, Burstein E, Li W, Zhang X, Mo X, Jia D. SCGN deficiency is a risk factor for autism spectrum disorder. Signal Transduct Target Ther 2023;8:3. [PMID: 36588101 DOI: 10.1038/s41392-022-01225-2] [Reference Citation Analysis]
3 Błażewicz A, Grabrucker AM. Metal Profiles in Autism Spectrum Disorders: A Crosstalk between Toxic and Essential Metals. Int J Mol Sci 2022;24. [PMID: 36613749 DOI: 10.3390/ijms24010308] [Reference Citation Analysis]
4 Mahony C, O'Ryan C. A molecular framework for autistic experiences: Mitochondrial allostatic load as a mediator between autism and psychopathology. Front Psychiatry 2022;13:985713. [PMID: 36506457 DOI: 10.3389/fpsyt.2022.985713] [Reference Citation Analysis]
5 Yu Zhou, Jing Gao. Why not try to predict autism spectrum disorder with crucial biomarkers in cuproptosis signaling pathway? Front Psychiatry 2022;13:1037503. [PMID: 36405901 DOI: 10.3389/fpsyt.2022.1037503] [Reference Citation Analysis]
6 Hu A, Li F, Guo L, Zhao X, Xiang X. Mitochondrial Damage of Lymphocytes in Patients with Acute Relapse of Schizophrenia: A Correlational Study with Efficacy and Clinical Symptoms. Neuropsychiatr Dis Treat 2022;18:2455-66. [PMID: 36325435 DOI: 10.2147/NDT.S380353] [Reference Citation Analysis]
7 Boterberg S, Vantroys E, De Paepe B, Van Coster R, Roeyers H. Urine lactate concentration as a non-invasive screener for metabolic abnormalities: Findings in children with autism spectrum disorder and regression. PLoS ONE 2022;17:e0274310. [DOI: 10.1371/journal.pone.0274310] [Reference Citation Analysis]
8 Pandey JP, Shi L, Brebion RA, Smith DS. LIS1 and NDEL1 Regulate Axonal Trafficking of Mitochondria in Mature Neurons. Front Mol Neurosci 2022;15:841047. [DOI: 10.3389/fnmol.2022.841047] [Reference Citation Analysis]
9 Yang J, He X, Qian L, Zhao B, Fan Y, Gao F, Yan B, Zhu F, Ma X. Association between plasma proteome and childhood neurodevelopmental disorders: A two-sample Mendelian randomization analysis. EBioMedicine 2022;78:103948. [PMID: 35306338 DOI: 10.1016/j.ebiom.2022.103948] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
10 Ma C, Wang X, He S, Zhang L, Bai J, Qu L, Qi J, Zheng X, Zhu X, Mei J, Guan X, Yuan H, Zhu D. Ubiquitinated AIF is a major mediator of hypoxia-induced mitochondrial dysfunction and pulmonary artery smooth muscle cell proliferation. Cell Biosci 2022;12. [DOI: 10.1186/s13578-022-00744-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Díaz-resendiz KJG, Covantes-rosales CE, Benítez-trinidad AB, Navidad-murrieta MS, Razura-carmona FF, Carrillo-cruz CD, Frias-delgadillo EJ, Pérez-díaz DA, Díaz-benavides MV, Zambrano-soria M, Ventura-ramón GH, Romero-castro A, Alam-escamilla D, Girón-pérez MI. Effect of Fucoidan on the Mitochondrial Membrane Potential (ΔΨm) of Leukocytes from Patients with Active COVID-19 and Subjects That Recovered from SARS-CoV-2 Infection. Marine Drugs 2022;20:99. [DOI: 10.3390/md20020099] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
12 Deutsch SI, Luyo ZNM, Burket JA. Targeted NMDA Receptor Interventions for Autism: Developmentally Determined Expression of GluN2B and GluN2A-Containing Receptors and Balanced Allosteric Modulatory Approaches. Biomolecules 2022;12:181. [DOI: 10.3390/biom12020181] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
13 Yazdani H, Shahbazi MA, Varma RS. 2D and 3D Covalent Organic Frameworks: Cutting-Edge Applications in Biomedical Sciences. ACS Appl Bio Mater 2022;5:40-58. [PMID: 35014828 DOI: 10.1021/acsabm.1c01015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
14 Fame RM, Lehtinen MK. Mitochondria in Early Forebrain Development: From Neurulation to Mid-Corticogenesis. Front Cell Dev Biol 2021;9:780207. [PMID: 34888312 DOI: 10.3389/fcell.2021.780207] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Mahony C, O'Ryan C. Convergent Canonical Pathways in Autism Spectrum Disorder from Proteomic, Transcriptomic and DNA Methylation Data. Int J Mol Sci 2021;22:10757. [PMID: 34639097 DOI: 10.3390/ijms221910757] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
16 Benaroya H. Brain energetics, mitochondria, and traumatic brain injury. Rev Neurosci 2020;31:363-90. [PMID: 32004148 DOI: 10.1515/revneuro-2019-0086] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
17 Al-Ayadhi L, Zayed N, Bhat RS, Moubayed NMS, Al-Muammar MN, El-Ansary A. The use of biomarkers associated with leaky gut as a diagnostic tool for early intervention in autism spectrum disorder: a systematic review. Gut Pathog 2021;13:54. [PMID: 34517895 DOI: 10.1186/s13099-021-00448-y] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
18 Burket JA, Webb JD, Deutsch SI. Perineuronal Nets and Metal Cation Concentrations in the Microenvironments of Fast-Spiking, Parvalbumin-Expressing GABAergic Interneurons: Relevance to Neurodevelopment and Neurodevelopmental Disorders. Biomolecules 2021;11:1235. [PMID: 34439901 DOI: 10.3390/biom11081235] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
19 Benaroya H. Optimization in Mitochondrial Energetic Pathways. Modern Trends in Structural and Solid Mechanics 3 2021. [DOI: 10.1002/9781119831839.ch1] [Reference Citation Analysis]
20 Wang J, Fröhlich H, Torres FB, Silva RL, Agarwal A, Rappold GA. Mitochondrial dysfunction and oxidative stress contribute to cognitive and motor impairment in FOXP1 syndrome.. [DOI: 10.1101/2021.07.05.451143] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
21 Yardeni T, Cristancho AG, McCoy AJ, Schaefer PM, McManus MJ, Marsh ED, Wallace DC. An mtDNA mutant mouse demonstrates that mitochondrial deficiency can result in autism endophenotypes. Proc Natl Acad Sci U S A 2021;118:e2021429118. [PMID: 33536343 DOI: 10.1073/pnas.2021429118] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
22 Cheng H, Yang B, Ke T, Li S, Yang X, Aschner M, Chen P. Mechanisms of Metal-Induced Mitochondrial Dysfunction in Neurological Disorders. Toxics 2021;9:142. [PMID: 34204190 DOI: 10.3390/toxics9060142] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
23 Furnary T, Garcia-Milian R, Liew Z, Whirledge S, Vasiliou V. In Silico Exploration of the Potential Role of Acetaminophen and Pesticides in the Etiology of Autism Spectrum Disorder. Toxics 2021;9:97. [PMID: 33925648 DOI: 10.3390/toxics9050097] [Reference Citation Analysis]
24 Kępka A, Ochocińska A, Chojnowska S, Borzym-Kluczyk M, Skorupa E, Knaś M, Waszkiewicz N. Potential Role of L-Carnitine in Autism Spectrum Disorder. J Clin Med 2021;10:1202. [PMID: 33805796 DOI: 10.3390/jcm10061202] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
25 Qiu YY, Zhang HS, Tang Y, Liu FY, Pang JQ, Zhang XY, Xiong H, Liang YS, Zhao HY, Chen SJ. Mitochondrial dysfunction resulting from the down-regulation of bone morphogenetic protein 5 may cause microtia. Ann Transl Med 2021;9:418. [PMID: 33842639 DOI: 10.21037/atm-21-831] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
26 Carli S, Chaabane L, Butti C, De Palma C, Aimar P, Salio C, Vignoli A, Giustetto M, Landsberger N, Frasca A. In vivo magnetic resonance spectroscopy in the brain of Cdkl5 null mice reveals a metabolic profile indicative of mitochondrial dysfunctions. J Neurochem 2021;157:1253-69. [PMID: 33448385 DOI: 10.1111/jnc.15300] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
27 Bressan P, Kramer P. Mental Health, Mitochondria, and the Battle of the Sexes. Biomedicines 2021;9:116. [PMID: 33530498 DOI: 10.3390/biomedicines9020116] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
28 Mousavi T, Abdollahi M. Mitochondrial abnormalities in psychological disorders. Mitochondrial Metabolism 2021. [DOI: 10.1016/b978-0-12-822416-8.00013-0] [Reference Citation Analysis]
29 Dattaro L. Meet the ‘mitomaniacs’ who say mitochondria matter in autism. Spectrum 2021. [DOI: 10.53053/zsfg9011] [Reference Citation Analysis]
30 Mussap M, Siracusano M, Noto A, Fattuoni C, Riccioni A, Rajula HSR, Fanos V, Curatolo P, Barberini L, Mazzone L. The Urine Metabolome of Young Autistic Children Correlates with Their Clinical Profile Severity. Metabolites 2020;10:E476. [PMID: 33238400 DOI: 10.3390/metabo10110476] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
31 Rea V, Van Raay TJ. Using Zebrafish to Model Autism Spectrum Disorder: A Comparison of ASD Risk Genes Between Zebrafish and Their Mammalian Counterparts. Front Mol Neurosci 2020;13:575575. [PMID: 33262688 DOI: 10.3389/fnmol.2020.575575] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
32 Xu Y, Li X, Huang J, Peng L, Luo D, Zhang Q, Dan Z, Xiao H, Yang F, Hu J. A simplified method to isolate rice mitochondria. Plant Methods 2020;16:149. [PMID: 33292390 DOI: 10.1186/s13007-020-00690-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
33 Zhang M, Chu Y, Meng Q, Ding R, Shi X, Wang Z, He Y, Zhang J, Liu J, Zhang J, Yu J, Kang Y, Wang J. A quasi-paired cohort strategy reveals the impaired detoxifying function of microbes in the gut of autistic children. Sci Adv 2020;6:eaba3760. [PMID: 33087359 DOI: 10.1126/sciadv.aba3760] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
34 Balachandar V, Rajagopalan K, Jayaramayya K, Jeevanandam M, Iyer M. Mitochondrial dysfunction: A hidden trigger of autism? Genes Dis 2021;8:629-39. [PMID: 34291134 DOI: 10.1016/j.gendis.2020.07.002] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
35 Stathopoulos S, Gaujoux R, Lindeque Z, Mahony C, Van Der Colff R, Van Der Westhuizen F, O'Ryan C. DNA Methylation Associated with Mitochondrial Dysfunction in a South African Autism Spectrum Disorder Cohort. Autism Res 2020;13:1079-93. [PMID: 32490597 DOI: 10.1002/aur.2310] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
36 Pecorelli A, Ferrara F, Messano N, Cordone V, Schiavone ML, Cervellati F, Woodby B, Cervellati C, Hayek J, Valacchi G. Alterations of mitochondrial bioenergetics, dynamics, and morphology support the theory of oxidative damage involvement in autism spectrum disorder. FASEB J 2020;34:6521-38. [PMID: 32246805 DOI: 10.1096/fj.201902677R] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 4.3] [Reference Citation Analysis]
37 Zhang M, Chu Y, Meng Q, Ding R, Shi X, Wang Z, He Y, Zhang J, Liu J, Zhang J, Yu J, Kang Y, Wang J. A quasi-paired cohort strategy reveals the impaired detoxifying function of microbes in the gut of autistic children.. [DOI: 10.1101/2020.03.10.984872] [Reference Citation Analysis]
38 Kanellopoulos AK, Mariano V, Spinazzi M, Woo YJ, Mclean C, Pech U, Li KW, Armstrong JD, Giangrande A, Callaerts P, Smit AB, Abrahams BS, Fiala A, Achsel T, Bagni C. Aralar Sequesters GABA into Hyperactive Mitochondria, Causing Social Behavior Deficits. Cell 2020;180:1178-1197.e20. [DOI: 10.1016/j.cell.2020.02.044] [Cited by in Crossref: 32] [Cited by in F6Publishing: 22] [Article Influence: 10.7] [Reference Citation Analysis]
39 El-Ansary A, Hassan WM, Daghestani M, Al-Ayadhi L, Ben Bacha A. Preliminary evaluation of a novel nine-biomarker profile for the prediction of autism spectrum disorder. PLoS One 2020;15:e0227626. [PMID: 31945130 DOI: 10.1371/journal.pone.0227626] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
40 Grabrucker AM. Nonessential metals and their brain pathology. Biometals in Autism Spectrum Disorders 2020. [DOI: 10.1016/b978-0-12-821132-8.00005-7] [Reference Citation Analysis]
41 Olsen I, Hicks SD. Oral microbiota and autism spectrum disorder (ASD). J Oral Microbiol 2020;12:1702806. [PMID: 31893019 DOI: 10.1080/20002297.2019.1702806] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 6.3] [Reference Citation Analysis]
42 Garlet QI, Haskel MVL, Pereira RP, da Silva WCFN, da Rocha JBT, Oliveira CS, Bonini JS. Delta-Aminolevulinate dehydratase and glutathione peroxidase activity in Alzheimer's disease: a case-control study. EXCLI J 2019;18:866-75. [PMID: 31645846 DOI: 10.17179/excli2019-1749] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Kharrat M, Triki C, Maalej M, Ncir S, Ammar M, Kammoun F, Fakhfakh F. First description of an unusual novel double mutation in MECP2 co-occurring with the m.827A>G mutation in the MT-RNR1 gene associated with angelman-like syndrome. Int J Dev Neurosci 2019;79:37-44. [PMID: 31647993 DOI: 10.1016/j.ijdevneu.2019.10.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]