BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li B, Feng Y, Zong Y, Zhang D, Hao X, Li P. Elevated CO2-induced changes in photosynthesis, antioxidant enzymes and signal transduction enzyme of soybean under drought stress. Plant Physiol Biochem 2020;154:105-14. [PMID: 32535322 DOI: 10.1016/j.plaphy.2020.05.039] [Cited by in Crossref: 9] [Cited by in F6Publishing: 21] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Marques I, Rodrigues AP, Gouveia D, Lidon FC, Martins S, Semedo MC, Gaillard JC, Pais IP, Semedo JN, Scotti-Campos P, Reboredo FH, Partelli FL, DaMatta FM, Armengaud J, Ribeiro-Barros AI, Ramalho JC. High-resolution shotgun proteomics reveals that increased air [CO2] amplifies the acclimation response of coffea species to drought regarding antioxidative, energy, sugar, and lipid dynamics. J Plant Physiol 2022;276:153788. [PMID: 35944291 DOI: 10.1016/j.jplph.2022.153788] [Reference Citation Analysis]
2 Zhang S, Hu T, Chen S, Ye R, Chen J, Geng C. Responses of Root Physiology and Yield of Apple Tree to Water and Nitrogen Amounts under Drip Fertigation. J Plant Growth Regul. [DOI: 10.1007/s00344-022-10745-8] [Reference Citation Analysis]
3 AbdElgawad H, Sheteiwy MS, Saleh AM, Mohammed AE, Alotaibi MO, Beemster GTS, Madany MMY, van Dijk JR. Elevated CO2 differentially mitigates chromium (VI) toxicity in two rice cultivars by modulating mineral homeostasis and improving redox status. Chemosphere 2022;307:135880. [PMID: 35964713 DOI: 10.1016/j.chemosphere.2022.135880] [Reference Citation Analysis]
4 Ahammed GJ, Li X. Elevated carbon dioxide-induced regulation of ethylene in plants. Environmental and Experimental Botany 2022. [DOI: 10.1016/j.envexpbot.2022.105025] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Bondok AET, Mousa WM, Rady AM, Saad-allah KM. Phenotypical, physiological and molecular assessment of drought tolerance of five Egyptian teosinte genotypes. Journal of Plant Interactions 2022;17:656-73. [DOI: 10.1080/17429145.2022.2085335] [Reference Citation Analysis]
6 Shaffique S, Khan MA, Imran M, Kang S, Park Y, Wani SH, Lee I. Research Progress in the Field of Microbial Mitigation of Drought Stress in Plants. Front Plant Sci 2022;13:870626. [DOI: 10.3389/fpls.2022.870626] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Pandey K, Kumar RS, Prasad P, Sushma, Pande V, Trivedi PK, Shirke PA. Synchronised interaction of carbon and nitrogen provides drought tolerance in Cyamopsis tetragonoloba. Environmental and Experimental Botany 2022. [DOI: 10.1016/j.envexpbot.2022.104899] [Reference Citation Analysis]
8 Lei P, Liu Z, Li J, Jin G, Xu L, Ji X, Zhao X, Tao L, Meng F. Integration of the Physiology, Transcriptome and Proteome Reveals the Molecular Mechanism of Drought Tolerance in Cupressus gigantea. Forests 2022;13:401. [DOI: 10.3390/f13030401] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Luo K, Yuan X, Xie C, Liu S, Chen P, Du Q, Zheng B, Wu Y, Wang X, Yong T, Yang W. Diethyl Aminoethyl Hexanoate Increase Relay Strip Intercropping Soybean Grain by Optimizing Photosynthesis Aera and Delaying Leaf Senescence. Front Plant Sci 2021;12:818327. [PMID: 35069671 DOI: 10.3389/fpls.2021.818327] [Reference Citation Analysis]
10 Li S, Liu F. Exogenous Abscisic Acid Priming Modulates Water Relation Responses of Two Tomato Genotypes With Contrasting Endogenous Abscisic Acid Levels to Progressive Soil Drying Under Elevated CO2. Front Plant Sci 2021;12:733658. [PMID: 34899772 DOI: 10.3389/fpls.2021.733658] [Reference Citation Analysis]
11 Wang L, Fan L, Jiang L, Tian C. Elevated CO2 increases shoot growth but not root growth and C:N:P stoichiometry of Suaeda aralocaspica plants. J Arid Land 2021;13:1155-62. [DOI: 10.1007/s40333-021-0025-1] [Reference Citation Analysis]
12 Amani Machiani M, Javanmard A, Morshedloo MR, Janmohammadi M, Maggi F. Funneliformis mosseae Application Improves the Oil Quantity and Quality and Eco-physiological Characteristics of Soybean (Glycine max L.) Under Water Stress Conditions. J Soil Sci Plant Nutr 2021;21:3076-90. [DOI: 10.1007/s42729-021-00590-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
13 Ulfat A, Mehmood A, Ahmad KS, Ul-Allah S. Elevated carbon dioxide offers promise for wheat adaptation to heat stress by adjusting carbohydrate metabolism. Physiol Mol Biol Plants 2021;27:2345-55. [PMID: 34744370 DOI: 10.1007/s12298-021-01080-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Amoah JN, Seo YW. Effect of progressive drought stress on physio-biochemical responses and gene expression patterns in wheat. 3 Biotech 2021;11:440. [PMID: 34603917 DOI: 10.1007/s13205-021-02991-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Singh SK, Reddy VR, Devi MJ, Timlin DJ. Impact of water stress under ambient and elevated carbon dioxide across three temperature regimes on soybean canopy gas exchange and productivity. Sci Rep 2021;11:16511. [PMID: 34389781 DOI: 10.1038/s41598-021-96037-9] [Reference Citation Analysis]
16 Roy S, Mathur P. Delineating the mechanisms of elevated CO2 mediated growth, stress tolerance and phytohormonal regulation in plants. Plant Cell Rep 2021;40:1345-65. [PMID: 34169360 DOI: 10.1007/s00299-021-02738-w] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
17 Selim S, Abuelsoud W, Al-Sanea MM, AbdElgawad H. Elevated CO2 differently suppresses the arsenic oxide nanoparticles-induced stress in C3 (Hordeum vulgare) and C4 (Zea maize) plants via altered homeostasis in metabolites specifically proline and anthocyanin metabolism. Plant Physiol Biochem 2021;166:235-45. [PMID: 34126591 DOI: 10.1016/j.plaphy.2021.05.036] [Cited by in Crossref: 1] [Cited by in F6Publishing: 9] [Article Influence: 1.0] [Reference Citation Analysis]
18 Yang P, Gan T, Pi W, Cao M, Chen D, Luo J. Effect of using Celosia argentea grown from seeds treated with a magnetic field to conduct Cd phytoremediation in drought stress conditions. Chemosphere 2021;280:130724. [PMID: 34162085 DOI: 10.1016/j.chemosphere.2021.130724] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
19 Ayyaz A, Miao Y, Hannan F, Islam F, Zhang K, Xu J, Farooq MA, Zhou W. Drought tolerance in Brassica napus is accompanied with enhanced antioxidative protection, photosynthetic and hormonal regulation at seedling stage. Physiol Plant 2021;172:1133-48. [PMID: 33599291 DOI: 10.1111/ppl.13375] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
20 Mubarik MS, Khan SH, Sajjad M, Raza A, Hafeez MB, Yasmeen T, Rizwan M, Ali S, Arif MS. A manipulative interplay between positive and negative regulators of phytohormones: A way forward for improving drought tolerance in plants. Physiol Plant 2021;172:1269-90. [PMID: 33421147 DOI: 10.1111/ppl.13325] [Cited by in Crossref: 6] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
21 Li Y, Zhang Q, Yu Y, Li X, Tan H. Integrated proteomics, metabolomics and physiological analyses for dissecting the toxic effects of halosulfuron-methyl on soybean seedlings (Glycine max merr.). Plant Physiol Biochem 2020;157:303-15. [PMID: 33157422 DOI: 10.1016/j.plaphy.2020.10.033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]