BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bartels A, Mock HP, Papenbrock J. Differential expression of Arabidopsis sulfurtransferases under various growth conditions. Plant Physiol Biochem 2007;45:178-87. [PMID: 17408957 DOI: 10.1016/j.plaphy.2007.02.005] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 1.5] [Reference Citation Analysis]
Number Citing Articles
1 Höfler S, Lorenz C, Busch T, Brinkkötter M, Tohge T, Fernie AR, Braun H, Hildebrandt TM. Dealing with the sulfur part of cysteine: four enzymatic steps degrade l -cysteine to pyruvate and thiosulfate in Arabidopsis mitochondria. Physiol Plantarum 2016;157:352-66. [DOI: 10.1111/ppl.12454] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
2 Steinitz B, Barr N, Tabib Y, Vaknin Y, Bernstein N. Control of in vitro rooting and plant development in Corymbia maculata by silver nitrate, silver thiosulfate and thiosulfate ion. Plant Cell Rep 2010;29:1315-23. [DOI: 10.1007/s00299-010-0918-5] [Cited by in Crossref: 32] [Cited by in F6Publishing: 14] [Article Influence: 2.7] [Reference Citation Analysis]
3 Papenbrock J, Guretzki S, Henne M. Latest news about the sulfurtransferase protein family of higher plants. Amino Acids 2011;41:43-57. [PMID: 20135153 DOI: 10.1007/s00726-010-0478-6] [Cited by in Crossref: 35] [Cited by in F6Publishing: 32] [Article Influence: 2.9] [Reference Citation Analysis]
4 Dai Q, Huang B, Yang Z, Yuan J, Yang J. Identification of cadmium-induced genes in maize seedlings by suppression subtractive hybridization. Front Environ Sci Eng China 2010;4:449-58. [DOI: 10.1007/s11783-010-0250-x] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
5 Soundararajan P, Manivannan A, Ko CH, Jeong BR. Silicon Enhanced Redox Homeostasis and Protein Expression to Mitigate the Salinity Stress in Rosa hybrida ‘Rock Fire’. J Plant Growth Regul 2018;37:16-34. [DOI: 10.1007/s00344-017-9705-7] [Cited by in Crossref: 20] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
6 Most P, Papenbrock J. Possible roles of plant sulfurtransferases in detoxification of cyanide, reactive oxygen species, selected heavy metals and arsenate. Molecules 2015;20:1410-23. [PMID: 25594348 DOI: 10.3390/molecules20011410] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
7 Laganowsky A, Gómez SM, Whitelegge JP, Nishio JN. Hydroponics on a chip: Analysis of the Fe deficient Arabidopsis thylakoid membrane proteome. Journal of Proteomics 2009;72:397-415. [DOI: 10.1016/j.jprot.2009.01.024] [Cited by in Crossref: 44] [Cited by in F6Publishing: 39] [Article Influence: 3.4] [Reference Citation Analysis]
8 Selles B, Moseler A, Rouhier N, Couturier J. Rhodanese domain-containing sulfurtransferases: multifaceted proteins involved in sulfur trafficking in plants. J Exp Bot 2019;70:4139-54. [PMID: 31055601 DOI: 10.1093/jxb/erz213] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
9 Nakajima T, Kawano Y, Ohtsu I, Maruyuama-nakashita A, Allahham A, Sato M, Sawada Y, Hirai MY, Yokoyama T, Ohkama-ohtsu N. Effects of Thiosulfate as a Sulfur Source on Plant Growth, Metabolites Accumulation and Gene Expression in Arabidopsis and Rice. Plant and Cell Physiology 2019;60:1683-701. [DOI: 10.1093/pcp/pcz082] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
10 Jiménez-Morales E, Aguilar-Hernández V, Aguilar-Henonin L, Guzmán P. Molecular basis for neofunctionalization of duplicated E3 ubiquitin ligases underlying adaptation to drought tolerance in Arabidopsis thaliana. Plant J 2020;104:474-92. [PMID: 33164265 DOI: 10.1111/tpj.14938] [Reference Citation Analysis]
11 González-gordo S, Palma JM, Corpas FJ. Appraisal of H2S metabolism in Arabidopsis thaliana: In silico analysis at the subcellular level. Plant Physiology and Biochemistry 2020;155:579-88. [DOI: 10.1016/j.plaphy.2020.08.014] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
12 Lim S, Baek W, Lee SC. Identification and functional roles of CaDIN1 in abscisic acid signaling and drought sensitivity. Plant Mol Biol 2014;86:513-25. [DOI: 10.1007/s11103-014-0242-5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
13 North KA, Ehlting B, Koprivova A, Rennenberg H, Kopriva S. Natural variation in Arabidopsis adaptation to growth at low nitrogen conditions. Plant Physiology and Biochemistry 2009;47:912-8. [DOI: 10.1016/j.plaphy.2009.06.009] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 2.5] [Reference Citation Analysis]
14 Schwachtje J, Karojet S, Thormählen I, Bernholz C, Kunz S, Brouwer S, Schwochow M, Köhl K, van Dongen JT. A naturally associated rhizobacterium of Arabidopsis thaliana induces a starvation-like transcriptional response while promoting growth. PLoS One 2011;6:e29382. [PMID: 22216267 DOI: 10.1371/journal.pone.0029382] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 2.4] [Reference Citation Analysis]
15 Guretzki S, Papenbrock J. Characterization of the sulfurtransferase family from Oryza sativa L. Plant Physiology and Biochemistry 2011;49:1064-70. [DOI: 10.1016/j.plaphy.2011.07.010] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
16 Nakai Y, Maruyama-Nakashita A. Biosynthesis of Sulfur-Containing Small Biomolecules in Plants. Int J Mol Sci 2020;21:E3470. [PMID: 32423011 DOI: 10.3390/ijms21103470] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Mao G, Wang R, Guan Y, Liu Y, Zhang S. Sulfurtransferases 1 and 2 play essential roles in embryo and seed development in Arabidopsis thaliana. J Biol Chem 2011;286:7548-57. [PMID: 21189252 DOI: 10.1074/jbc.M110.182865] [Cited by in Crossref: 18] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
18 Khairy H, Meinert C, Wübbeler JH, Poehlein A, Daniel R, Voigt B, Riedel K, Steinbüchel A. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism. PLoS One 2016;11:e0167539. [PMID: 27977722 DOI: 10.1371/journal.pone.0167539] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
19 Brandt U, Waletzko C, Voigt B, Hecker M, Steinbüchel A. Mercaptosuccinate metabolism in Variovorax paradoxus strain B4--a proteomic approach. Appl Microbiol Biotechnol 2014;98:6039-50. [PMID: 24839213 DOI: 10.1007/s00253-014-5811-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
20 Klug K, Hogekamp C, Specht A, Myint SS, Blöink D, Küster H, Horst WJ. Spatial gene expression analysis in tomato hypocotyls suggests cysteine as key precursor of vascular sulfur accumulation implicated in Verticillium dahliae defense. Physiol Plantarum 2015;153:253-68. [DOI: 10.1111/ppl.12239] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]