BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Van Hoeck A, Horemans N, Nauts R, Van Hees M, Vandenhove H, Blust R. Lemna minor plants chronically exposed to ionising radiation: RNA-seq analysis indicates a dose rate dependent shift from acclimation to survival strategies. Plant Sci 2017;257:84-95. [PMID: 28224921 DOI: 10.1016/j.plantsci.2017.01.010] [Cited by in Crossref: 33] [Cited by in F6Publishing: 21] [Article Influence: 6.6] [Reference Citation Analysis]
Number Citing Articles
1 Fu L, Ding Z, Sun X, Zhang J. Physiological and Transcriptomic Analysis Reveals Distorted Ion Homeostasis and Responses in the Freshwater Plant Spirodela polyrhiza L. under Salt Stress. Genes (Basel) 2019;10:E743. [PMID: 31554307 DOI: 10.3390/genes10100743] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
2 Gudkov SV, Grinberg MA, Sukhov V, Vodeneev V. Effect of ionizing radiation on physiological and molecular processes in plants. J Environ Radioact 2019;202:8-24. [PMID: 30772632 DOI: 10.1016/j.jenvrad.2019.02.001] [Cited by in Crossref: 35] [Cited by in F6Publishing: 10] [Article Influence: 11.7] [Reference Citation Analysis]
3 Laanen P, Saenen E, Mysara M, Van de Walle J, Van Hees M, Nauts R, Van Nieuwerburgh F, Voorspoels S, Jacobs G, Cuypers A, Horemans N. Changes in DNA Methylation in Arabidopsis thaliana Plants Exposed Over Multiple Generations to Gamma Radiation. Front Plant Sci 2021;12:611783. [PMID: 33868326 DOI: 10.3389/fpls.2021.611783] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Mertens A, Horemans N, Saenen E, Nauts R, Cuypers A. Calcium affects uranium responses in Arabidopsis thaliana: From distribution to toxicity. Plant Physiology and Biochemistry 2022. [DOI: 10.1016/j.plaphy.2022.05.020] [Reference Citation Analysis]
5 Volkova PY, Bondarenko EV, Kazakova EA. Radiation Hormesis in Plants. Current Opinion in Toxicology 2022. [DOI: 10.1016/j.cotox.2022.02.007] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
6 Volkova PY, Duarte GT, Kazakova EA, Makarenko ES, Bitarishvili SV, Bondarenko VS, Perevolotskii AN, Geras'kin SA, Garbaruk DK, Turchin LM. Radiosensitivity of herbaceous plants to chronic radiation exposure: Field study in the Chernobyl exclusion zone. Science of The Total Environment 2021;777:146206. [DOI: 10.1016/j.scitotenv.2021.146206] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
7 Pernis M, Skultety L, Shevchenko V, Klubicova K, Rashydov N, Danchenko M. Soybean recovery from stress imposed by multigenerational growth in contaminated Chernobyl environment. J Plant Physiol 2020;251:153219. [PMID: 32563765 DOI: 10.1016/j.jplph.2020.153219] [Reference Citation Analysis]
8 Caplin N, Willey N. Ionizing Radiation, Higher Plants, and Radioprotection: From Acute High Doses to Chronic Low Doses. Front Plant Sci 2018;9:847. [PMID: 29997637 DOI: 10.3389/fpls.2018.00847] [Cited by in Crossref: 41] [Cited by in F6Publishing: 24] [Article Influence: 10.3] [Reference Citation Analysis]
9 Kang R, Seo E, Park A, Kim WJ, Kang BH, Lee JH, Kim SH, Kang SY, Ha BK. A Comparison of the Transcriptomes of Cowpeas in Response to Two Different Ionizing Radiations. Plants (Basel) 2021;10:567. [PMID: 33802840 DOI: 10.3390/plants10030567] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Hevrøy TH, Golz AL, Hansen EL, Xie L, Bradshaw C. Radiation effects and ecological processes in a freshwater microcosm. J Environ Radioact 2019;203:71-83. [PMID: 30870637 DOI: 10.1016/j.jenvrad.2019.03.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
11 Fu L, Ding Z, Kumpeangkeaw A, Sun X, Zhang J. Gene coexpression analysis reveals dose-dependent and type-specific networks responding to ionizing radiation in the aquatic model plant Lemna minor using public data. J Genet 2019;98. [DOI: 10.1007/s12041-019-1063-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
12 Rai PK, Kim K, Lee SS, Lee J. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. Science of The Total Environment 2020;705:135858. [DOI: 10.1016/j.scitotenv.2019.135858] [Cited by in Crossref: 35] [Cited by in F6Publishing: 17] [Article Influence: 17.5] [Reference Citation Analysis]
13 Horemans N, Spurgeon DJ, Lecomte-Pradines C, Saenen E, Bradshaw C, Oughton D, Rasnaca I, Kamstra JH, Adam-Guillermin C. Current evidence for a role of epigenetic mechanisms in response to ionizing radiation in an ecotoxicological context. Environ Pollut 2019;251:469-83. [PMID: 31103007 DOI: 10.1016/j.envpol.2019.04.125] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
14 Tack N, Wamelink G, Denkova A, Schouwenburg M, Hilhorst H, Wolterbeek H, Goedhart P. Influence of Martian Radiation-like Conditions on the Growth of Secale cereale and Lepidium sativum. Front Astron Space Sci 2021;8:665649. [DOI: 10.3389/fspas.2021.665649] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Ziegler P, Sree KS, Appenroth K. Duckweed biomarkers for identifying toxic water contaminants? Environ Sci Pollut Res 2019;26:14797-822. [DOI: 10.1007/s11356-018-3427-7] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
16 Fu L, Ding Z, Kumpeangkeaw A, Tan D, Han B, Sun X, Zhang J. De novo assembly, transcriptome characterization, and simple sequence repeat marker development in duckweed Lemna gibba. Physiol Mol Biol Plants 2020;26:133-42. [PMID: 32158126 DOI: 10.1007/s12298-019-00726-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
17 Duarte GT, Volkova PY, Geras'kin SA. The response profile to chronic radiation exposure based on the transcriptome analysis of Scots pine from Chernobyl affected zone. Environ Pollut 2019;250:618-26. [PMID: 31035144 DOI: 10.1016/j.envpol.2019.04.064] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 2.7] [Reference Citation Analysis]
18 Massa S, Pagliarello R, Cemmi A, Di Sarcina I, Bombarely A, Demurtas OC, Diretto G, Paolini F, Petzold HE, Bliek M, Bennici E, Del Fiore A, De Rossi P, Spelt C, Koes R, Quattrocchio F, Benvenuto E. Modifying Anthocyanins Biosynthesis in Tomato Hairy Roots: A Test Bed for Plant Resistance to Ionizing Radiation and Antioxidant Properties in Space. Front Plant Sci 2022;13:830931. [PMID: 35283922 DOI: 10.3389/fpls.2022.830931] [Reference Citation Analysis]
19 Bradshaw C, Meseh DA, Alasawi H, Qiang M, Snoeijs-leijonmalm P, Nascimento FJ. Joint effects of gamma radiation and cadmium on subcellular-, individual- and population-level endpoints of the green microalga Raphidocelis subcapitata. Aquatic Toxicology 2019;211:217-26. [DOI: 10.1016/j.aquatox.2019.04.008] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
20 Romano LE, Aronne G. The World Smallest Plants (Wolffia Sp.) as Potential Species for Bioregenerative Life Support Systems in Space. Plants (Basel) 2021;10:1896. [PMID: 34579428 DOI: 10.3390/plants10091896] [Reference Citation Analysis]
21 Shesterikova EM, Bondarenko VS, Volkova PY. Differential gene expression in chronically irradiated herbaceous species from the Chernobyl exclusion zone. Int J Radiat Biol 2022;:1-9. [PMID: 35704451 DOI: 10.1080/09553002.2022.2087927] [Reference Citation Analysis]
22 Antonova EV, Shoeva OY, Khlestkina EK. Biochemical and genetic polymorphism of Bromopsis inermis populations under chronic radiation exposure. Planta 2019;249:1977-85. [PMID: 30900085 DOI: 10.1007/s00425-019-03144-z] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
23 Yu C, Zhao X, Qi G, Bai Z, Wang Y, Wang S, Ma Y, Liu Q, Hu R, Zhou G. Integrated analysis of transcriptome and metabolites reveals an essential role of metabolic flux in starch accumulation under nitrogen starvation in duckweed. Biotechnol Biofuels 2017;10:167. [PMID: 28670341 DOI: 10.1186/s13068-017-0851-8] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 4.4] [Reference Citation Analysis]
24 Blagojevic D, Lee Y, Xie L, Brede DA, Nybakken L, Lind OC, Tollefsen KE, Salbu B, Solhaug KA, Olsen JE. No evidence of a protective or cumulative negative effect of UV-B on growth inhibition induced by gamma radiation in Scots pine (Pinus sylvestris) seedlings. Photochem Photobiol Sci 2019;18:1945-62. [PMID: 31305802 DOI: 10.1039/c8pp00491a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
25 Ekperusi AO, Sikoki FD, Nwachukwu EO. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere 2019;223:285-309. [PMID: 30784736 DOI: 10.1016/j.chemosphere.2019.02.025] [Cited by in Crossref: 59] [Cited by in F6Publishing: 40] [Article Influence: 19.7] [Reference Citation Analysis]
26 Adam-Guillermin C, Hertal-Aas T, Oughton D, Blanchard L, Alonzo F, Armant O, Horemans N. Radiosensitivity and transgenerational effects in non-human species. Ann ICRP 2018;47:327-41. [PMID: 29745724 DOI: 10.1177/0146645318756844] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
27 An D, Li C, Zhou Y, Wu Y, Wang W. Genomes and Transcriptomes of Duckweeds. Front Chem 2018;6:230. [PMID: 29974050 DOI: 10.3389/fchem.2018.00230] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 3.5] [Reference Citation Analysis]
28 Blagojevic D, Lee Y, Brede DA, Lind OC, Yakovlev I, Solhaug KA, Fossdal CG, Salbu B, Olsen JE. Comparative sensitivity to gamma radiation at the organismal, cell and DNA level in young plants of Norway spruce, Scots pine and Arabidopsis thaliana. Planta 2019;250:1567-90. [PMID: 31372744 DOI: 10.1007/s00425-019-03250-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
29 Bodnar IS, Cheban EV. Combined action of gamma radiation and exposure to copper ions on Lemna minor L. Int J Radiat Biol 2021;:1-10. [PMID: 33635160 DOI: 10.1080/09553002.2021.1894655] [Reference Citation Analysis]
30 Babina D, Podobed M, Bondarenko E, Kazakova E, Bitarishvili S, Podlutskii M, Mitsenyk A, Prazyan A, Gorbatova I, Shesterikova E, Volkova P. Seed Gamma Irradiation of Arabidopsis thaliana ABA-Mutant Lines Alters Germination and Does Not Inhibit the Photosynthetic Efficiency of Juvenile Plants. Dose Response 2020;18:1559325820979249. [PMID: 33456412 DOI: 10.1177/1559325820979249] [Reference Citation Analysis]