BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ober D, Kaltenegger E. Pyrrolizidine alkaloid biosynthesis, evolution of a pathway in plant secondary metabolism. Phytochemistry 2009;70:1687-95. [PMID: 19545881 DOI: 10.1016/j.phytochem.2009.05.017] [Cited by in Crossref: 51] [Cited by in F6Publishing: 40] [Article Influence: 3.9] [Reference Citation Analysis]
Number Citing Articles
1 Takano A, Kakehi J, Takahashi T. Thermospermine is Not a Minor Polyamine in the Plant Kingdom. Plant and Cell Physiology 2012;53:606-16. [DOI: 10.1093/pcp/pcs019] [Cited by in Crossref: 89] [Cited by in F6Publishing: 79] [Article Influence: 8.9] [Reference Citation Analysis]
2 Mancebo-aracil J, Nájera C, Sansano JM. Multicomponent synthesis of unnatural pyrrolizidines using 1,3-dipolar cycloaddition of proline esters. Chem Commun 2013;49:11218. [DOI: 10.1039/c3cc47184e] [Cited by in Crossref: 13] [Cited by in F6Publishing: 5] [Article Influence: 1.4] [Reference Citation Analysis]
3 Schramm S, Köhler N, Rozhon W. Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants. Molecules 2019;24:E498. [PMID: 30704105 DOI: 10.3390/molecules24030498] [Cited by in Crossref: 38] [Cited by in F6Publishing: 26] [Article Influence: 12.7] [Reference Citation Analysis]
4 Toplak M, Wiedemann G, Ulićević J, Daniel B, Hoernstein SNW, Kothe J, Niederhauser J, Reski R, Winkler A, Macheroux P. The single berberine bridge enzyme homolog of Physcomitrella patens is a cellobiose oxidase. FEBS J 2018;285:1923-43. [PMID: 29633551 DOI: 10.1111/febs.14458] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
5 Daniel B, Pavkov-Keller T, Steiner B, Dordic A, Gutmann A, Nidetzky B, Sensen CW, van der Graaff E, Wallner S, Gruber K, Macheroux P. Oxidation of Monolignols by Members of the Berberine Bridge Enzyme Family Suggests a Role in Plant Cell Wall Metabolism. J Biol Chem 2015;290:18770-81. [PMID: 26037923 DOI: 10.1074/jbc.M115.659631] [Cited by in Crossref: 51] [Cited by in F6Publishing: 29] [Article Influence: 7.3] [Reference Citation Analysis]
6 Parent GJ, Giguère I, Mageroy M, Bohlmann J, Mackay JJ. Evolution of the biosynthesis of two hydroxyacetophenones in plants: Evolution of hydroxyacetophenone biosynthesis. Plant Cell Environ 2018;41:620-9. [DOI: 10.1111/pce.13134] [Cited by in Crossref: 15] [Cited by in F6Publishing: 6] [Article Influence: 3.8] [Reference Citation Analysis]
7 Moreira R, Pereira DM, Valentão P, Andrade PB. Pyrrolizidine Alkaloids: Chemistry, Pharmacology, Toxicology and Food Safety. Int J Mol Sci 2018;19:E1668. [PMID: 29874826 DOI: 10.3390/ijms19061668] [Cited by in Crossref: 70] [Cited by in F6Publishing: 52] [Article Influence: 17.5] [Reference Citation Analysis]
8 Moghe GD, Last RL. Something Old, Something New: Conserved Enzymes and the Evolution of Novelty in Plant Specialized Metabolism. Plant Physiol 2015;169:1512-23. [PMID: 26276843 DOI: 10.1104/pp.15.00994] [Cited by in Crossref: 30] [Cited by in F6Publishing: 50] [Article Influence: 4.3] [Reference Citation Analysis]
9 Schimming O, Challinor VL, Tobias NJ, Adihou H, Grün P, Pöschel L, Richter C, Schwalbe H, Bode HB. Structure, Biosynthesis, and Occurrence of Bacterial Pyrrolizidine Alkaloids. Angew Chem Int Ed Engl 2015;54:12702-5. [PMID: 26465655 DOI: 10.1002/anie.201504877] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
10 Liu L, Li S, Sun R, Qin X, Ju J, Zhang C, Duan Y, Huang Y. Activation and Characterization of Bohemamine Biosynthetic Gene Cluster from Streptomyces sp. CB02009. Org Lett 2020;22:4614-9. [PMID: 32463693 DOI: 10.1021/acs.orglett.0c01224] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Langel D, Ober D, Pelser PB. The evolution of pyrrolizidine alkaloid biosynthesis and diversity in the Senecioneae. Phytochem Rev 2011;10:3-74. [DOI: 10.1007/s11101-010-9184-y] [Cited by in Crossref: 48] [Cited by in F6Publishing: 24] [Article Influence: 4.0] [Reference Citation Analysis]
12 Pankoke H, Gehring R, Müller C. Impact of the dual defence system of Plantago lanceolata (Plantaginaceae) on performance, nutrient utilisation and feeding choice behaviour of Amata mogadorensis larvae (Lepidoptera, Erebidae). J Insect Physiol 2015;82:99-108. [PMID: 26306994 DOI: 10.1016/j.jinsphys.2015.08.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
13 Shoji T, Hashimoto T. Polyamine-Derived Alkaloids in Plants: Molecular Elucidation of Biosynthesis. In: Kusano T, Suzuki H, editors. Polyamines. Tokyo: Springer Japan; 2015. pp. 189-200. [DOI: 10.1007/978-4-431-55212-3_16] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
14 Kaltenegger E, Eich E, Ober D. Evolution of homospermidine synthase in the convolvulaceae: a story of gene duplication, gene loss, and periods of various selection pressures. Plant Cell 2013;25:1213-27. [PMID: 23572540 DOI: 10.1105/tpc.113.109744] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 2.4] [Reference Citation Analysis]
15 Ober D. Gene duplications and the time thereafter - examples from plant secondary metabolism. Plant Biol (Stuttg) 2010;12:570-7. [PMID: 20636899 DOI: 10.1111/j.1438-8677.2009.00317.x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 20] [Article Influence: 0.3] [Reference Citation Analysis]
16 Tamariz J, Burgueño-tapia E, Vázquez MA, Delgado F. Pyrrolizidine Alkaloids. Elsevier; 2018. pp. 1-314. [DOI: 10.1016/bs.alkal.2018.03.001] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 3.5] [Reference Citation Analysis]
17 Rech C, Ribeiro LP, Bento JMS, Pott CA, Nardi C. Monocrotaline presence in the Crotalaria (Fabaceae) plant genus and its influence on arthropods in agroecosystems. Braz J Biol 2024;84:e256916. [DOI: 10.1590/1519-6984.256916] [Reference Citation Analysis]
18 Obata D, Takabayashi A, Tanaka R, Tanaka A, Ito H. Horizontal Transfer of Promiscuous Activity from Nonphotosynthetic Bacteria Contributed to Evolution of Chlorophyll Degradation Pathway. Mol Biol Evol 2019;36:2830-41. [PMID: 31432082 DOI: 10.1093/molbev/msz193] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
19 Wei X, Vrieling K, Mulder PPJ, Klinkhamer PGL. Methyl Jasmonate Changes the Composition and Distribution Rather than the Concentration of Defence Compounds: a Study on Pyrrolizidine Alkaloids. J Chem Ecol 2019;45:136-45. [PMID: 30284188 DOI: 10.1007/s10886-018-1020-7] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
20 Wesseling AM, Demetrowitsch TJ, Schwarz K, Ober D. Variability of Pyrrolizidine Alkaloid Occurrence in Species of the Grass Subfamily Pooideae (Poaceae). Front Plant Sci 2017;8:2046. [PMID: 29250094 DOI: 10.3389/fpls.2017.02046] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.6] [Reference Citation Analysis]
21 Schimming O, Challinor VL, Tobias NJ, Adihou H, Grün P, Pöschel L, Richter C, Schwalbe H, Bode HB. Structure, Biosynthesis, and Occurrence of Bacterial Pyrrolizidine Alkaloids. Angew Chem 2015;127:12893-6. [DOI: 10.1002/ange.201504877] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
22 Huang S, Tabudravu J, Elsayed SS, Travert J, Peace D, Tong MH, Kyeremeh K, Kelly SM, Trembleau L, Ebel R, Jaspars M, Yu Y, Deng H. Discovery of a Single Monooxygenase that Catalyzes Carbamate Formation and Ring Contraction in the Biosynthesis of the Legonmycins. Angew Chem 2015;127:12888-92. [DOI: 10.1002/ange.201502902] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 1.1] [Reference Citation Analysis]
23 Michael AJ. Polyamines in Eukaryotes, Bacteria, and Archaea. J Biol Chem 2016;291:14896-903. [PMID: 27268252 DOI: 10.1074/jbc.R116.734780] [Cited by in Crossref: 124] [Cited by in F6Publishing: 64] [Article Influence: 20.7] [Reference Citation Analysis]
24 Irmer S, Podzun N, Langel D, Heidemann F, Kaltenegger E, Schemmerling B, Geilfus CM, Zörb C, Ober D. New aspect of plant-rhizobia interaction: alkaloid biosynthesis in Crotalaria depends on nodulation. Proc Natl Acad Sci U S A 2015;112:4164-9. [PMID: 25775562 DOI: 10.1073/pnas.1423457112] [Cited by in Crossref: 29] [Cited by in F6Publishing: 21] [Article Influence: 4.1] [Reference Citation Analysis]
25 Livshultz T, Kaltenegger E, Straub SCK, Weitemier K, Hirsch E, Koval K, Mema L, Liston A. Evolution of pyrrolizidine alkaloid biosynthesis in Apocynaceae: revisiting the defence de-escalation hypothesis. New Phytol 2018;218:762-73. [PMID: 29479722 DOI: 10.1111/nph.15061] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 3.8] [Reference Citation Analysis]
26 Daniel B, Konrad B, Toplak M, Lahham M, Messenlehner J, Winkler A, Macheroux P. The family of berberine bridge enzyme-like enzymes: A treasure-trove of oxidative reactions. Arch Biochem Biophys 2017;632:88-103. [PMID: 28676375 DOI: 10.1016/j.abb.2017.06.023] [Cited by in Crossref: 50] [Cited by in F6Publishing: 44] [Article Influence: 10.0] [Reference Citation Analysis]
27 Gulati J, Baldwin IT, Gaquerel E. The roots of plant defenses: integrative multivariate analyses uncover dynamic behaviors of gene and metabolic networks of roots elicited by leaf herbivory. Plant J 2014;77:880-92. [PMID: 24456376 DOI: 10.1111/tpj.12439] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 2.9] [Reference Citation Analysis]
28 Nandy S, Das T, Tudu CK, Mishra T, Ghorai M, Gadekar VS, Anand U, Kumar M, Behl T, Shaikh NK, Jha NK, Shekhawat MS, Pandey DK, Dwivedi P, Radha, Dey A. Unravelling the multi-faceted regulatory role of polyamines in plant biotechnology, transgenics and secondary metabolomics. Appl Microbiol Biotechnol 2022. [PMID: 35039927 DOI: 10.1007/s00253-021-11748-3] [Reference Citation Analysis]
29 Fu P, La S, MacMillan JB. 1,3-Oxazin-6-one Derivatives and Bohemamine-Type Pyrrolizidine Alkaloids from a Marine-Derived Streptomyces spinoverrucosus. J Nat Prod 2016;79:455-62. [PMID: 26489038 DOI: 10.1021/acs.jnatprod.5b00604] [Cited by in Crossref: 25] [Cited by in F6Publishing: 16] [Article Influence: 3.6] [Reference Citation Analysis]
30 Shoji T, Hashimoto T. Recruitment of a duplicated primary metabolism gene into the nicotine biosynthesis regulon in tobacco. Plant J 2011;67:949-59. [PMID: 21605206 DOI: 10.1111/j.1365-313X.2011.04647.x] [Cited by in Crossref: 51] [Cited by in F6Publishing: 20] [Article Influence: 4.6] [Reference Citation Analysis]
31 Langel D, Ober D. Evolutionary recruitment of a flavin-dependent monooxygenase for stabilization of sequestered pyrrolizidine alkaloids in arctiids. Phytochemistry 2011;72:1576-84. [PMID: 21288541 DOI: 10.1016/j.phytochem.2010.12.014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 1.6] [Reference Citation Analysis]
32 Kaltenegger E, Ober D. Paralogue Interference Affects the Dynamics after Gene Duplication. Trends in Plant Science 2015;20:814-21. [DOI: 10.1016/j.tplants.2015.10.003] [Cited by in Crossref: 20] [Cited by in F6Publishing: 17] [Article Influence: 2.9] [Reference Citation Analysis]
33 Nuringtyas TR, Verpoorte R, Klinkhamer PGL, van Oers MM, Leiss KA. Toxicity of Pyrrolizidine Alkaloids to Spodoptera exigua Using Insect Cell Lines and Injection Bioassays. J Chem Ecol 2014;40:609-16. [DOI: 10.1007/s10886-014-0459-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 1.6] [Reference Citation Analysis]
34 Poupon E, Salame R, Yan L. Biomimetic Synthesis of Ornithine/Arginine and Lysine-Derived Alkaloids: Selected Examples. In: Poupon E, Nay B, editors. Biomimetic Organic Synthesis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2011. pp. 1-60. [DOI: 10.1002/9783527634606.ch1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
35 Munakata R, Kitajima S, Nuttens A, Tatsumi K, Takemura T, Ichino T, Galati G, Vautrin S, Bergès H, Grosjean J, Bourgaud F, Sugiyama A, Hehn A, Yazaki K. Convergent evolution of the UbiA prenyltransferase family underlies the independent acquisition of furanocoumarins in plants. New Phytol 2020;225:2166-82. [PMID: 31642055 DOI: 10.1111/nph.16277] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
36 Zakaria MM, Schemmerling B, Ober D. CRISPR/Cas9-Mediated Genome Editing in Comfrey (Symphytum officinale) Hairy Roots Results in the Complete Eradication of Pyrrolizidine Alkaloids. Molecules 2021;26:1498. [PMID: 33801907 DOI: 10.3390/molecules26061498] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
37 Cordell GA. Fifty years of alkaloid biosynthesis in Phytochemistry. Phytochemistry 2013;91:29-51. [PMID: 22721782 DOI: 10.1016/j.phytochem.2012.05.012] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 3.1] [Reference Citation Analysis]
38 Nowak M, Selmar D, Wittstock U. Cellular distribution of alkaloids and their translocation via phloem and xylem: the importance of compartment pH. Plant Biol J 2016;18:879-82. [DOI: 10.1111/plb.12504] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 2.7] [Reference Citation Analysis]
39 Bunsupa S, Katayama K, Ikeura E, Oikawa A, Toyooka K, Saito K, Yamazaki M. Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in leguminosae. Plant Cell 2012;24:1202-16. [PMID: 22415272 DOI: 10.1105/tpc.112.095885] [Cited by in Crossref: 77] [Cited by in F6Publishing: 63] [Article Influence: 7.7] [Reference Citation Analysis]
40 Fu P, MacMillan JB. Spithioneines A and B, Two New Bohemamine Derivatives Possessing Ergothioneine Moiety from a Marine-Derived Streptomyces spinoverrucosus. Org Lett 2015;17:3046-9. [PMID: 26024315 DOI: 10.1021/acs.orglett.5b01328] [Cited by in Crossref: 30] [Cited by in F6Publishing: 27] [Article Influence: 4.3] [Reference Citation Analysis]
41 Huang S, Tabudravu J, Elsayed SS, Travert J, Peace D, Tong MH, Kyeremeh K, Kelly SM, Trembleau L, Ebel R, Jaspars M, Yu Y, Deng H. Discovery of a Single Monooxygenase that Catalyzes Carbamate Formation and Ring Contraction in the Biosynthesis of the Legonmycins. Angew Chem Int Ed Engl 2015;54:12697-701. [PMID: 26206556 DOI: 10.1002/anie.201502902] [Cited by in Crossref: 34] [Cited by in F6Publishing: 24] [Article Influence: 4.9] [Reference Citation Analysis]
42 Niemüller D, Reimann A, Ober D. Distinct cell-specific expression of homospermidine synthase involved in pyrrolizidine alkaloid biosynthesis in three species of the boraginales. Plant Physiol 2012;159:920-9. [PMID: 22566491 DOI: 10.1104/pp.112.195024] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 1.3] [Reference Citation Analysis]